Skip to main content

Effect of Coronary Perfusion on Myocardial Contractility in the Heart

  • Chapter
Cardiac Adaptation and Failure

Summary

Coronary perfusion pressure and blood flow are closely linked to myocardial metabolic states and contractility. When coronary perfusion pressure is decreased below the level of the coronary flow autoregulation, myocardial contractility is markedly decreased: myocardial ischemia causes accumulation of H+ and inorganic phosphates, both of which decrease the myofilament sensitivity to Ca2+ and maximal response of myofilaments to Ca2+. Furthermore, adenosine and endothelial-dependent relaxant factor (EDRF; NO), produced during ischemia, stimulate Gi proteins and guanylate cyclase, respectively, both of which have been reported to decrease myocardial contractility. In turn, norepinephrine is released according to the severity of myocardial ischemia, which tends to compensate the depression of myocardial contractility. On the other hand, even if myocardial ischemia is not apparent due to coronary flow autoregulation during mild reduction of coronary perfusion pressure, myocardial contractility is decreased, recognized as Gregg’s phenomenon. There are several hypotheses to explain this phenomenon: (1) decreases in sarcomere length of the myofilaments; (2) reversal of latent myocardial ischemia; (3) release of cardiodepressive agents; and (4) decreases in Ca2+ transient and Ca2+ sensitivity. We measured Ca2+ transients in the ferret Langendorff preparation at various perfusion pressures. The amplitude of Ca2+ transients was decreased when coronary perfusion pressure was reduced within the range of coronary flow autoregulation. Considering these results together, we support the tight linkage between coronary perfusion and myocardial contractility in normal and ischemic hearts. The concerted interaction between myocardial perfusion and intracellular Ca2+ contraction may be essential for maintaining homeostasis of myocardial cellular function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chang AE, Detar R (1980) Oxygen and vascular smooth muscle contraction revisited. Am J Physiol 238:H716–H718

    PubMed  CAS  Google Scholar 

  2. Case RB, Felix A, Wachter M, Kyriakidis G, Castellana F (1978) Relative effect of CO2 on canine coronary vascular resistance. Circ Res 42:410–418

    Article  PubMed  CAS  Google Scholar 

  3. Broten TP, Feigl EO (1992) Role of myocardial oxygen and carbon dioxide in coronary autoregulation. Am J Physiol 262:H1231–H1237

    PubMed  CAS  Google Scholar 

  4. Hori M, Kitakaze M (1991) Adenosine, the heart, and coronary circulation. Hypertension 18:565–574

    Article  PubMed  CAS  Google Scholar 

  5. Sparks H, Bardenheuer H (1986) Regulation of adenosine formation in the heart. Circ Res 58:193–201

    Article  PubMed  CAS  Google Scholar 

  6. Berne RM, Rubio R (1979) Coronary circulation. In: Berne RM, Sperelakis N, Geiger SR (eds) Handbook of physiology, Sec 2. The cardiovascular system. American Physiology Society, Washington DC, pp 873–952

    Google Scholar 

  7. Berne RM (1980) The role of adenosine in the regulation of coronary blood flow. Circ Res 47:807–813

    Article  PubMed  CAS  Google Scholar 

  8. Berne RM, Rubio R, Curnish RR (1974) Release of adenosine from ischemic brain: effect on cerebral vascular resistance and incorporation into cerebral adenine nucleotides. Circ Res 35:262–271

    Article  CAS  Google Scholar 

  9. Berne RM, Winn HR, Knabb RM, Ely SW, Rubio R (1983) Blood flow regulation by adenosine in heart, brain and skeletal muscle. In: Berne RM, Rall TW, Rubio R (eds) Regulatory function of adenosine. Nijhoff, The Hague, pp 293–317

    Chapter  Google Scholar 

  10. Fox AC, Reed GE, Glassman E, Kaltman AJ, Silk BB (1974) Release of adenosine from human hearts during angina induced by rapid atrial pacing. J Clin Invest 53:1447–1457

    Article  PubMed  CAS  Google Scholar 

  11. Watkinson WP, Foley DH, Rubio R, Berne RM (1979) Myocardial adenosine formation with increased cardiac performance in the dog. Am J Physiol 296:H13–H21

    Google Scholar 

  12. Schrader J, Haddy FJ, Gerlach E (1977) Release of adenosine, inosine and hypoxanthine from the isolated guinea pig heart during hypoxia, flow-autoregulation and reactive hyperemia. Pfluegers Arch 369:1–6

    Article  CAS  Google Scholar 

  13. Kroll K, Feigl EO (1985) Adenosine is unimportant in controlling coronary blood flow in unstressed dog hearts. Am J Physiol 249:H1186–H1187

    Google Scholar 

  14. Dole WP, Yamada N, Bishop VS, Olsson RA (1985) Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circ Res 56:517–524

    Article  PubMed  CAS  Google Scholar 

  15. Gidday JM, Ely SW, Esther JW, Berne RM (1984) Progressive attenuation of coronary reactive hyperemia with increasing interstitial theophylline permeation. Fed Proc 43:1084

    Google Scholar 

  16. Hanley FL, Grattan MT, Stevens MB, Hoffman JIE (1986) Role of adenosine in coronary autoregulation. Am J Physiol 251:H558–H566

    Google Scholar 

  17. Ueeda M, Silvia S, Olsson RA (1992) Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res 70:1296–1303

    Article  PubMed  CAS  Google Scholar 

  18. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L (1990) Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 247:1341–1344

    Article  PubMed  CAS  Google Scholar 

  19. Narishige T, Egashira K, Akatsuka Y, Imamura Y, Takahashi T, Kasuya H, Takeshita A (1994) Glibenclamide prevents coronary vasodilation induced by β1 adrenoceptor stimulation in dogs. Am J Physiol 266:H84–H92

    PubMed  CAS  Google Scholar 

  20. Aversano T, Ouyang P, Silverman H (1991) Blockade of the ATP-sensitive potassium channel modulate reactive hyperemia in the canine coronary circulation. Circ Res 69:618–622

    Article  PubMed  CAS  Google Scholar 

  21. Komaru T, Lamping KG, Easthan CL, Dellsperger KC (1991) Role of ATP-sensitive potassium channels in coronary microvascular autoregulatory responses. Circ Res 69:1146–1151

    Article  PubMed  CAS  Google Scholar 

  22. Lederer WJ, Nichols CG (1989) Nucletoide modulation of the activity of rat heart ATP-sensitive K+ channels in isolated membrane patches. J Physiol 419:193–211

    PubMed  CAS  Google Scholar 

  23. Fan Z, Maleilski JC (1993) Intracellular H+ and Ca2+ modulation of trypsin-modified ATP-sensitive K+ channels in rabbit ventricular myocytes. Circ Res 72:715–722

    Article  PubMed  CAS  Google Scholar 

  24. Kuo L, Davis MJ, Chilian WM (1988) Myogenic activity in isolated subepicardial and subendocardial coronary arteries. Am J Physiol 255:H1558–H1562

    PubMed  CAS  Google Scholar 

  25. Johnson PC, Intaglietta M (1976) Contributions of pressure and flow sensitivity to auto-regulation in mesenteric arterioles. Am J Physiol 231:1686–1698

    PubMed  CAS  Google Scholar 

  26. Zuberbuhler RC, Bohr DF (1965) Responses of coronary smooth muscle to catecholamine. Circ Res 16:431–440

    Article  PubMed  CAS  Google Scholar 

  27. Murry PA, Vatner SF (1979) Alpha-adrenoceptor attenuation of the coronary vascular response to severe exercise in the conscious dog. Circ Res 45:654–660

    Article  Google Scholar 

  28. Vatner SF (1983) Alpha-adrenergic regulation of the coronary circulation in the conscious dog. Am J Cardiol 52:15A–21A

    Article  PubMed  CAS  Google Scholar 

  29. Nathan HJ, Feigl EO (1986) Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 250:H645–H653

    PubMed  CAS  Google Scholar 

  30. Buffington CW, Feigl EO (1983) Effect of coronary artery pressure on transmural distribution of adrenergic coronary vasoconstriction in the dog. Circ Res 53:613–621

    Article  PubMed  CAS  Google Scholar 

  31. Kitakaze M, Hori M, Tamai J, Iwakura K, Koretsune Y, Kagiya T, Iwai K, Kitabatake A, Inoue M, Kamada T (1987) Alpha1-adrenoceptor activity release of adenosine from the ischemic myocardium in dogs. Circ Res 60:631–639

    Article  PubMed  CAS  Google Scholar 

  32. Hori M, Tamai J, Kitakaze M, Iwakura K, Gotoh K, Iwai K, Koretsune Y, Kagiya T, Kitabatake A, Kamada T (1989) Adenosine-induced hyperemia attenuates myocardial ischemia in coronary microembolization in dogs. Am J Physiol 257:H244–H251

    PubMed  CAS  Google Scholar 

  33. Buxton ILO, Walther J, Westfall DP (1990) Purinergic mechanisms in cardiac blood vessels: Stimulation of endothelial cell alpha receptors in vitro by the neurotransmitter norepinephrine leads to the rapid release of ATP and its subsequent breakdown to adenosine (abstract). Heart Vessels 4(Suppl):27

    Google Scholar 

  34. Kitakaze M, Hori M, Iwakura K, Sato H, Gotoh K, Tada M (1989) Protein kinase C regulates production of adenosine in hypoxic myocytes of rats (abstract). Circulation 80:11–498

    Google Scholar 

  35. Kitakaze M, Hori M, Kamada T (1993) Role of adenosine and its interaction with alpha adrenoceptor activity in ischemic and reperfusion injury of the heart myocardium. Cardiovasc Res 27:18–27

    Article  PubMed  CAS  Google Scholar 

  36. Kusuoka H, Weisfeldt ML, Jacobus E, Zweier J, Marban E (1986) Mechanism of early contractile failure during hypoxia in intact ferret heart: Evidence for modulation of maximal Ca2+-activated force by inorganic phosphate. Circ Res 59:270–282

    Article  PubMed  CAS  Google Scholar 

  37. Gregg DE (1963) Effects of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res 13:497–500

    Article  PubMed  CAS  Google Scholar 

  38. Kitakaze M, Marban E (1989) Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol 414:455–472

    PubMed  CAS  Google Scholar 

  39. Schouten VJ, Allaart CP, Westerhof N (1992) Effect of perfusion pressure on force contraction in thin papillary muscles and trabeculae from rat heart. J Physiol 451:585–604

    PubMed  CAS  Google Scholar 

  40. Feigl EO (1983) Coronary physiology. Physiol Rev 63:1–205

    PubMed  CAS  Google Scholar 

  41. Haneda T, Morgan HE, Watson PA (1988) Effect of calcium uptake increased by elevated aortic pressure on total and ribosomal protein synthesis in rat heart. J Mol Cell Cardiol 20:[Suppl III]-S35

    Google Scholar 

  42. Schreiber SS, Klein IL, Oratz M, Rothschild MA (1971) Adenylate cyclase activity and cyclic AMP in acute cardiac overload: a method for measuring cyclic AMP production based on ATP specific activity. J Mol Cell Cardiol 2:55–65

    Article  PubMed  CAS  Google Scholar 

  43. Isenberg G, Cerbai E, Klockner U (1987) Ionic channels and adenosine in isolated heart cells. In: Gerlach E, Becker BF (eds) Topics and perspective in adenosine research. Berlin, Springer-Verlag, pp 323–335

    Chapter  Google Scholar 

  44. Cerbai E, Klockner U, Isenberg G (1988) Ca-antagonistic effects of adenosine in guinea pig atrial cells. Am J Physiol 255:H872–H878

    PubMed  CAS  Google Scholar 

  45. Rahimtoola SH, Griffith GC (1989) The hibernating myocardium. Am Heart J 117:211–221

    Article  PubMed  CAS  Google Scholar 

  46. Akins CW, Pohost GM, DeSanctis RW, Block PC (1980) Selection of angina-free patients with severe left ventricular dysfuction for myocardial revascularization. Am J Cardiol 46:695–700

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Japan

About this chapter

Cite this chapter

Kitakaze, M. et al. (1994). Effect of Coronary Perfusion on Myocardial Contractility in the Heart. In: Hori, M., Maruyama, Y., Reneman, R.S. (eds) Cardiac Adaptation and Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67014-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67014-8_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67016-2

  • Online ISBN: 978-4-431-67014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics