Skip to main content

Abnormalities in β-Adrenergic Signal Transduction with Myocardial Decompensation and Failure

  • Chapter
Book cover Cardiac Adaptation and Failure
  • 52 Accesses

Summary

The progression of changes in β-adrenergic receptor signalling was studied over several time points during the development of pacing-induced heart failure in long-term instrumented, conscious dogs. Animals were paced at 240 beats per minute for one month and data were averaged at 1 day, 1 week, and 3–4 weeks after pacing. The rate of change in left ventricular pressure (LV dP/dt) was decreased at 1 day, LV end-diastolic pressure and heart rate were increased at 1 week, but heart failure occurred only after 3–4 weeks of pacing. Circulating levels of norepinephrine were elevated after 1 day of pacing, and tissue levels of norepinephrine were reduced only after 3–4 weeks of pacing. High-affinity β-adrenergic receptors and adenylyl cyclase activity decreased after one day of pacing. β1-adrenergic receptor density decreased after one week of pacing. Gs functional activity was not reduced, but Giα2 rose after 3–4 weeks of pacing. Thus, β-adrenergic receptor signal transduction is significantly altered early, i. e., 1 day after the initiation of rapid ventricular pacing, prior to the development of heart failure. Changes occurring at 1 day after rapid ventricular pacing include increases in plasma catecholamines, uncoupling of the β-adrenergic receptor from adenylyl cyclase, and a decrease in adenylyl cyclase activity. After more prolonged pacing there is a decrease in β1-adrenergic receptors, decreases in myocardial tissue catecholamines, and increases in Giα2. Therefore, physiological changes in β-adrenergic receptor function during the initial development of heart failure appear to be mediated by different mechanisms than those changes that occur later as heart failure becomes manifest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Francis GS, Cohn JN (1986) The autonomic nervous system in congestive heart failure. Annu Rev Med 37:235–247

    Article  PubMed  CAS  Google Scholar 

  2. Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41:233–243

    Article  PubMed  CAS  Google Scholar 

  3. Covell JW, Chidsey CA, Braunwald E (1966) Reduction of the cardiac response to postganglionic sympathetic nerve stimulation in experimental heart failure. Circ Res 19:51–56

    Article  Google Scholar 

  4. Cohn JN, Levine TB, Olivari MT, Garberg V, Lubra D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. New Engl J Med 311:819–823

    Article  PubMed  CAS  Google Scholar 

  5. Daly PA, Sole MJ (1990) Myocardial catecholamines and the pathophysiology of heart failure. Circulation 82[Suppl I]:I35–I43

    PubMed  CAS  Google Scholar 

  6. Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39:442–451

    Article  PubMed  CAS  Google Scholar 

  7. Spann JF, Chidsey CA, Pool PE, Braunwald E (1965) Mechanism of norepinephrine depletion in experimental heart failure produced by aortic constriction in the guinea pig. Circ Res 17:312–321

    Article  PubMed  CAS  Google Scholar 

  8. Karliner JS, Barnes P, Brown M, Dollery C (1980) Chronic heart failure in the guinea pig increases cardiac alpha1-and beta-adrenoceptors. Eur J Pharmacol 67:115–118

    Article  PubMed  CAS  Google Scholar 

  9. Vatner DE, Vatner SF, Fujii AM, Homcy CJ (1985) Loss of high affinity cardiac beta adrenergic receptors in dogs with heart failure. J Clin Invest 76:2259–2264

    Article  PubMed  CAS  Google Scholar 

  10. Ho K, Lloyd BL, Taylor RR (1981) Cardiac beta-adrenoreceptors in the thyroxinetreated dog. Clin Exp Pharmacol Physiol 8:183–187

    Article  PubMed  CAS  Google Scholar 

  11. Calderone A, Bouvier M, Li K, Juneau C, Champlain J, Rouleau J (1991) Dysfunction of the β-and α-adrenergic systems in a model of congestive heart failure: The pacing-overdrive dog. Circ Res 69:332–343

    Article  PubMed  CAS  Google Scholar 

  12. Marzo KP, Frey MJ, Wilson JR, Liang BT, Manning DR, Lanoce V, Molinoff PB (1991) β-adrenergic receptor-G protein-adenylate cyclase complex in experimental canine congestive heart failure produced by rapid ventricular pacing. Circ Res 69:1546–1556

    Article  PubMed  CAS  Google Scholar 

  13. Fan T-HM, Liang C-S, Kawashima S, Banerjee SP (1987) Alterations in cardiac β-adrenoceptor responsiveness and adenylate cyclase system by congestive heart failure in dogs. Eur J Pharmacol 140:123–132

    Article  PubMed  CAS  Google Scholar 

  14. Hammond HK, Roth DA, Insel PA, Ford CE, White FC, Maisel AS, Ziegler MG, Bloor CM (1992) Myocardial β-adrenergic receptor expression and signal transduction after chronic volume-overload hypertrophy and circulatory congestion. Circulation 85:269–280

    Article  PubMed  CAS  Google Scholar 

  15. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmusen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB (1986) β1-and β2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective β1-receptor down-regulation in heart failure. Circ Res 59:297–309

    Article  PubMed  CAS  Google Scholar 

  16. Brodde O-E, Zerkowski H-R, Doetsch N, Motomura S, Khamssi M, Michel MC (1989) Myocardial β-adrenergic changes in heart failure: Concomitant reduction in β1 and β2-adrenergic function related to the degree of heart failure in patients with mitral valve disease. J Am Coll Cardiol 14:323–331

    Article  PubMed  CAS  Google Scholar 

  17. Shannon RP, Komamura K, Stambler BS, Manders WT, Vatner SF (1991) Alterations in myocardial contractility in conscious dogs with dilated cardiomyopathy. Am J Physiol 260:H1903–H1911

    PubMed  CAS  Google Scholar 

  18. Komamura K, Shannon RP, Pasipoularides A, Ihara T, Lader AS, Patrick TA, Bishop SP, Vatner SF (1992) Alterations in left ventricular diastolic function in conscious dogs with pacing-induced heart failure. J Clin Invest 89:1825–1838

    Article  PubMed  CAS  Google Scholar 

  19. Kiuchi K, Shannon RP, Komamura K, Cohen DJ, Bianchi C, Homcy CJ, Vatner SF, Vatner DE (1993) Myocardial β-adrenergic receptor function during the development of pacing-induced heart failure. J Clin Invest 91:907–914

    Article  PubMed  CAS  Google Scholar 

  20. Susanni EE, Manders WT, Knight DR, Vatner DE, Vatner SF, Homcy CJ (1989) One hour of myocardial ischemia decreases the activity of the stimulatory guanine-nucleotide regulatory protein Gs. Circ Res 65:1145–1150

    Article  PubMed  CAS  Google Scholar 

  21. Mumby SM, Kahn RA, Manning DR, Gilman AG (1986) Antisera of designed specificity for subunits of guanine nucleotide-binding regulatory proteins. Proc Natl Acad Sci USA 83:265–269

    Article  PubMed  CAS  Google Scholar 

  22. Salomon Y, Londos C, Rodbell M (1974) A highly sensitive adenylate cyclase assay. Anal Biochem 58:541–548

    Article  PubMed  CAS  Google Scholar 

  23. Peuleur JD, Johnson GA (1977) Simultaneous single isotope radioenzymatic assay of plasma norepinephrine, epinephrine and dopamine. Life Sci 21:625–636

    Article  Google Scholar 

  24. Bristow MR, Kantrowitz ME, Ginsburg R, Fowler MB (1985) β-adrenergic function in heart muscle disease and heart failure. J Mol Cell Cardiol 17:41–52

    Article  PubMed  CAS  Google Scholar 

  25. Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and β-adrenergic-receptor density in failing human hearts. New Engl J Med 307:205–211

    Article  PubMed  CAS  Google Scholar 

  26. Dennis AR, Marsh JD, Quigg RJ, Gordon JB, Colucci WS (1989) β-adrenergic receptor number and adenylate cyclase function in denervated transplanted and cardiomyopathic human hearts. Circulation 79:1028–1034

    Article  Google Scholar 

  27. Vago T, Bevilacqua M, Norbiato G, Baldi G, Chebat E, Bertora P, Baroldi G, Accinni R (1989) Identification of α1-adrenergic receptors on sarcolemma from normal subjects and patients with idiopathic dilated cardiomyopathy: Characteristics and linkage to GTP-binding protein. Circ Res 64:474–481

    Article  PubMed  CAS  Google Scholar 

  28. Harden TK (1983) Agonist-induced desensitization of the β-adrenergic receptor-linked adenylate cyclase. Pharmacol Rev 35(1):5–32

    PubMed  CAS  Google Scholar 

  29. Sibley DR, Lefkowitz RJ (1985) Molecular mechanisms of receptor desensitization using the β-adrenergic receptor-coupled adenylate cyclase system as a model. Nature 317:124–129

    Article  PubMed  CAS  Google Scholar 

  30. Benovic JL, Bouvier M, Caron MG, Lefkowitz RJ (1988) Regulation of adenylyl cyclase-coupled β-adrenergic receptors. Annu Rev Cell Biol 4:405–428

    Article  PubMed  CAS  Google Scholar 

  31. Su Y-F, Harden TK, Perkins JP (1980) Catecholamine-specific desensitization of adenylate cyclase: Evidence for a multistep process. J Biol Chem 255:7410–7419

    PubMed  CAS  Google Scholar 

  32. Ishikawa Y, Katsushika S, Kiuchi K, Shannon RP, Komamura K, Sorota S, Vatner DE, Vatner SF, Homey CJ (1994) Downregulation of adenylylcyclase Types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest 93:2224–2229

    Article  PubMed  CAS  Google Scholar 

  33. Manalan AS, Besch HR Jr, Watanabe AM (1981) Characterization of [3H](±)Carazolol binding to β-adrenergic receptors: Application to study of β-adrenergic receptor subtypes in canine ventricular myocardium and lung. Circ Res 49:326–336

    Article  PubMed  CAS  Google Scholar 

  34. DeLean A, Stadel JM, Lefkowitz RJ (1980) A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β-adrenergic receptor. J Biol Chem 255:7108–7117

    CAS  Google Scholar 

  35. Fowler MB, Laser JA, Hopkins GL, Minobe W, Bristow MR (1986) Assessment of the β-adrenergic receptor pathway in the intact failing human heart: progressive receptor down-regulation and subsensitivity to agonist response. Circulation 74:1290–1302

    Article  PubMed  CAS  Google Scholar 

  36. Feldman AM, Cates AE, Veazey WB, Harshberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C (1988) Increase of the 40000-mol wt pertussis toxin substrate (G-protein) in the failing human heart. J Clin Invest 82:189–197

    Article  PubMed  CAS  Google Scholar 

  37. Horn EM, Chow YK, Neuberg GW, Corwin SJ, Powers ER, Bilezikian JP, Cannon PJ, Steinberg SF (1986) The guanine nucleotide regulatory protein Ns is reduced in congestive heart failure (abstract). Circulation 74[Suppl II]:II198

    Google Scholar 

  38. Horn EM, Gottlieb SS, Morrow B, Bilezikian JP, Packer M (1987) Hemodynamic and prognostic significance of altered lymphocyte guanine nucleotide binding proteins in congestive heart failure (abstract). Circulation 76[Suppl IV]:IV88

    Google Scholar 

  39. Chen L, Vatner DE, Vatner SF, Hittinger L, Homey CJ (1991) Decreased G mRNA levels accompany the fall in Gs and adenylyl cyclase activities in compensated left ventricular hypertrophy. In heart failure, only the impairment in adenylyl cyclase activation progresses. J Clin Invest 87:293–298

    Article  PubMed  CAS  Google Scholar 

  40. Böhm M, Gierschik P, Jakobs K-H, Pieske B, Schnabel P, Ungerer M, Erdmann E (1990) Increase of G in human hearts with dilated but not ischemic cardiomyopathy. Circulation 82:1249–1265

    Article  PubMed  Google Scholar 

  41. Eschenhagen T, Mende U, Nose M, Schmitz W, Scholz H, Haverich A, Hirt S, Döring V, Kalmár P, Höppner W, Seitz H-J (1992) Increased messenger RNA level of the inhibitory G protein α subunit Giα−2 in human end-stage heart failure. Circ Res 70:688–696

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Japan

About this chapter

Cite this chapter

Vatner, D.E. (1994). Abnormalities in β-Adrenergic Signal Transduction with Myocardial Decompensation and Failure. In: Hori, M., Maruyama, Y., Reneman, R.S. (eds) Cardiac Adaptation and Failure. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67014-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67014-8_14

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67016-2

  • Online ISBN: 978-4-431-67014-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics