Anisotropy versus Universality in Shear Flow Turbulence

  • Yoshiyuki Tsuji
Conference paper


The local isotropy hypothesis presented by Kolmogorov seems to work well as a good approximation depending on the nature of large-scale anisotropy. We discuss how the large-scale anisotropy penetrates the small scales by investigating the anisotropic spectrum measured in the rough wall boundary layers.


Boundary Layer Shear Flow Reynolds Stress Turbulent Boundary Layer High Reynolds Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad, Nauk SSSR, 30, (1941)[reprinted in Proc. R. Soc. Lond. A, 434, (1991), pp9–13.]MathSciNetMATHGoogle Scholar
  2. 2.
    A. N. Kolmogorov, Dissipation of energy in the locally isotropic turbulence, Dokl. Akad, Nauk SSSR, 32, (1941)[reprinted in Proc. R. Soc. Lond. A, 434, (1991), pp 15–17.]MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    I. Arad, B. Dhruva, S. Kurien, V.S. L’vov, I. Procassia, and K.R. Sreenivasan, Extraction of anisotropic contribution in turbulent flows, Phys. Rev. Lett., 81–24, (1998), pp5330–5334.CrossRefGoogle Scholar
  4. 4.
    I. Arad, V.S. L’vov, and I. Procaccia, Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group, Phys. Rev. E, 59–6, (1999), pp.6753–6765.MathSciNetCrossRefGoogle Scholar
  5. 5.
    K.R. Sreenivasan and G. Stolovitzky, Statistical Dependence of Inertila Range Properties on Large Scales in a High-Reynolds-Number Shear Flow, Physical Rev. Lett., 77, (1996), pp.2218–2221.CrossRefGoogle Scholar
  6. 6.
    K.R. Sreenivasan and B. Dhruva, Is There Scaling in High-Reynolds-Number Turbulence?, Progress of Theoretical Physics Suppul., 130, (1998), pp.103–120.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Y. Tsuji, Large Scale Anisotropy and Small Scale Universality over Rough Wall Turbulent Boundary Layers, submitting. (2001)Google Scholar
  8. 8.
    T. Ishihara, K. Yoshida and Y. Kaneda, Anisotropic Velocity Correlation Spectrum at Small Scales in a Homogeneous Turbulent Shear Flow, Phys. Rev. Lett., 88, (2002), 154–501.CrossRefGoogle Scholar
  9. 9.
    S.B. Pope, Turbulent Flows, Cambridge University Press, (2000).MATHCrossRefGoogle Scholar
  10. 10.
    M. M. Zdravkovich, Flow Around Circular Cylinder, Oxford University Press, (1997).Google Scholar
  11. 11.
    P. R. Spalart, Direct Simulation of a Turbulent Boundary Layer up to R θ = 1410, J. Fluid Mech., 187, pp.61–98, (1988).MATHCrossRefGoogle Scholar
  12. 12.
    J. C. Wyngaard and S. F. Clifford, Taylor’s Hypothesis and High-Frequeny Turbulence Spectra, Journal of the Atomospheric Sciences, vol.34, pp.922–929, (1977)CrossRefGoogle Scholar
  13. 13.
    J. C. Wyngaard and O. R. Cote, Cospectral Similarity in the Atmospheric Surface Layer, Quart. J. R. Met. Soc, vol.98, pp.590–603, (1972).CrossRefGoogle Scholar
  14. 14.
    S. J. Caughey, J. C. Wyngaard, and J. C. Kaimal, Turbulence in theEvolving Stable Boundary Layer, Journal of the Atmospheric Sciences, vol.36, pp. 1041–1052, (1979).Google Scholar
  15. 15.
    S. Pond, G.T. Phelps, J. E. Paquin, G. McBean, and R. W. Stewart, Measurements of the Turbulent Fluxes of Momentum, Moisture and Sensible Heat over the Ocean, Journal of the Atmospheric Sciences, vol.28, pp.901–917, (1971).CrossRefGoogle Scholar
  16. 16.
    V. Borue and S. A. Orszag, Numerical Study of Three-dimensional Kolmogorov Flow, J. Fluid Mech., vol.306, pp.293–323, (1996).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    J. G. Kaimal, J.C. Wyngaard, Y, Izumi, and O. R. Cote, Spectral Characteristics of Surface-layer Turbulence, Quart. J. R. Met. Soc, vol.98, pp.563–589, (1972).CrossRefGoogle Scholar
  18. 18.
    A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, M.I.T. Press, (1975).Google Scholar
  19. 19.
    W. George and H.J. Hussein, Locally axisymmetric turbulence, J. Fluid Mech., 233, (1991), pp.1–23.MATHCrossRefGoogle Scholar
  20. 20.
    P.S. Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient, National Advisory Committee for Aeronautics, Technical Note 3178 (1954).Google Scholar
  21. 21.
    I. Marusic, J.D. Li and A.E. Perry, A Study of the Reynolds-Shear-Stress Spectra in Zero-Pressure-Gradient Boundary Layers, 10th Australasian Fluid Mechanics Conference, University of Melbourne, 11–15 Dec, (1989), pp l5–18.Google Scholar
  22. 22.
    J.L. Lumley, Interpretation of Time Spectra measured in High-intensity Shear Flows, Phys. Fluids, 8, p.1065–1062, (1965)CrossRefGoogle Scholar
  23. 23.
    J.L. Lumley, Similarity and the Turbulent Energy Spectrum, Phys. Fluids, 10, p.855–858, (1967)CrossRefGoogle Scholar
  24. 24.
    J.L. Lumley and G.R. Newman, The Return to Isotropy of Homogeneous Turbulence, J. Fluid Mech., 82, pp. 161–178, (1977).MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    V.M. Canuto, A Dynamical Model for Turbulence I,II,III, Phys. Fluids, 8, pp.571–613, (1996).MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    P.A. Durbin and C.G. Speziale, Local Anisotropy in Strained Turbulence at High Reynolds Numbers, J. Fluids Engineering, 113, pp.707–709, (1991).CrossRefGoogle Scholar
  27. 27.
    M. Lee, J. Kim and P. Moin, Structure of turbulence at High Shear Rate, J. Fluid Mech., 216, pp.561–583, (1990).CrossRefGoogle Scholar
  28. 28.
    S. Corrsin, On local Isotropy in Turbulent Shear Flow, NACA R & M 58B11, (1958).Google Scholar
  29. 29.
    L.W. Browne, R.A. Antonia and D.A. Shah, Turbulent Energy Dissipation in a Wake, J. Fluid Mech., 179, pp.307–326, (1987).CrossRefGoogle Scholar
  30. 30.
    S.G. Saddoughi and S.V. Veeravalli, Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech., 268, (1994), pp.333–372.CrossRefGoogle Scholar
  31. 31.
    S.G. Saddoughi, Local isotropy in complex turbulent boundary layers at high Reynolds number, J. Fluid Mech., 348, (1997), pp.201–245.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Y. Tsuji, Peak position of dissipation spectrum in turbulent boundary layers, Phys. Rev. E, 59, (1999), pp.7235–7238.Google Scholar
  33. 33.
    Y. Tsuji and B. Dhruva, Intermittency feature of shear stress fluctuation in high-Reynolds-number turbulence, Physics of Fluids, 11, (1999), pp.3017–3025.MATHCrossRefGoogle Scholar
  34. 34.
    R.A. Antonia and J. Kim, Isotropy of Small-scale Turbulence, Proc. Summer Program of the Center for Turbulence Research, Stanford, (1992).Google Scholar
  35. 35.
    H.H. Fernholz and P.J. Finley, The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data, Prog. Aerospace Sci., 32, 245 (1996).CrossRefGoogle Scholar
  36. 36.
    A.E. Perry and J.D. Li, Experimental Support for the Attached-Eddy Hypothesis in Zero-Pressure-Gradient Turbulent Boundary Layers, J. Fluid Mech., 218, 405 (1990).CrossRefGoogle Scholar
  37. 37.
    J. Schumacher, K.R. Sreenivasan, and P.K. Yeung, Derivative moments in turbulent shear flow, submitting, (2002).Google Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Yoshiyuki Tsuji
    • 1
  1. 1.Department of Energy Engineerig and ScienceNagoya UniversityNagoya city, AichiJapan

Personalised recommendations