Skip to main content

Anisotropy versus Universality in Shear Flow Turbulence

  • Conference paper
Statistical Theories and Computational Approaches to Turbulence
  • 286 Accesses

Abstract

The local isotropy hypothesis presented by Kolmogorov seems to work well as a good approximation depending on the nature of large-scale anisotropy. We discuss how the large-scale anisotropy penetrates the small scales by investigating the anisotropic spectrum measured in the rough wall boundary layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. N. Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Dokl. Akad, Nauk SSSR, 30, (1941)[reprinted in Proc. R. Soc. Lond. A, 434, (1991), pp9–13.]

    MathSciNet  MATH  Google Scholar 

  2. A. N. Kolmogorov, Dissipation of energy in the locally isotropic turbulence, Dokl. Akad, Nauk SSSR, 32, (1941)[reprinted in Proc. R. Soc. Lond. A, 434, (1991), pp 15–17.]

    Article  MathSciNet  MATH  Google Scholar 

  3. I. Arad, B. Dhruva, S. Kurien, V.S. L’vov, I. Procassia, and K.R. Sreenivasan, Extraction of anisotropic contribution in turbulent flows, Phys. Rev. Lett., 81–24, (1998), pp5330–5334.

    Article  Google Scholar 

  4. I. Arad, V.S. L’vov, and I. Procaccia, Correlation functions in isotropic and anisotropic turbulence: The role of the symmetry group, Phys. Rev. E, 59–6, (1999), pp.6753–6765.

    Article  MathSciNet  Google Scholar 

  5. K.R. Sreenivasan and G. Stolovitzky, Statistical Dependence of Inertila Range Properties on Large Scales in a High-Reynolds-Number Shear Flow, Physical Rev. Lett., 77, (1996), pp.2218–2221.

    Article  Google Scholar 

  6. K.R. Sreenivasan and B. Dhruva, Is There Scaling in High-Reynolds-Number Turbulence?, Progress of Theoretical Physics Suppul., 130, (1998), pp.103–120.

    Article  MathSciNet  Google Scholar 

  7. Y. Tsuji, Large Scale Anisotropy and Small Scale Universality over Rough Wall Turbulent Boundary Layers, submitting. (2001)

    Google Scholar 

  8. T. Ishihara, K. Yoshida and Y. Kaneda, Anisotropic Velocity Correlation Spectrum at Small Scales in a Homogeneous Turbulent Shear Flow, Phys. Rev. Lett., 88, (2002), 154–501.

    Article  Google Scholar 

  9. S.B. Pope, Turbulent Flows, Cambridge University Press, (2000).

    Book  MATH  Google Scholar 

  10. M. M. Zdravkovich, Flow Around Circular Cylinder, Oxford University Press, (1997).

    Google Scholar 

  11. P. R. Spalart, Direct Simulation of a Turbulent Boundary Layer up to R θ = 1410, J. Fluid Mech., 187, pp.61–98, (1988).

    Article  MATH  Google Scholar 

  12. J. C. Wyngaard and S. F. Clifford, Taylor’s Hypothesis and High-Frequeny Turbulence Spectra, Journal of the Atomospheric Sciences, vol.34, pp.922–929, (1977)

    Article  Google Scholar 

  13. J. C. Wyngaard and O. R. Cote, Cospectral Similarity in the Atmospheric Surface Layer, Quart. J. R. Met. Soc, vol.98, pp.590–603, (1972).

    Article  Google Scholar 

  14. S. J. Caughey, J. C. Wyngaard, and J. C. Kaimal, Turbulence in theEvolving Stable Boundary Layer, Journal of the Atmospheric Sciences, vol.36, pp. 1041–1052, (1979).

    Google Scholar 

  15. S. Pond, G.T. Phelps, J. E. Paquin, G. McBean, and R. W. Stewart, Measurements of the Turbulent Fluxes of Momentum, Moisture and Sensible Heat over the Ocean, Journal of the Atmospheric Sciences, vol.28, pp.901–917, (1971).

    Article  Google Scholar 

  16. V. Borue and S. A. Orszag, Numerical Study of Three-dimensional Kolmogorov Flow, J. Fluid Mech., vol.306, pp.293–323, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  17. J. G. Kaimal, J.C. Wyngaard, Y, Izumi, and O. R. Cote, Spectral Characteristics of Surface-layer Turbulence, Quart. J. R. Met. Soc, vol.98, pp.563–589, (1972).

    Article  Google Scholar 

  18. A.S. Monin and A.M. Yaglom, Statistical Fluid Mechanics, M.I.T. Press, (1975).

    Google Scholar 

  19. W. George and H.J. Hussein, Locally axisymmetric turbulence, J. Fluid Mech., 233, (1991), pp.1–23.

    Article  MATH  Google Scholar 

  20. P.S. Klebanoff, Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient, National Advisory Committee for Aeronautics, Technical Note 3178 (1954).

    Google Scholar 

  21. I. Marusic, J.D. Li and A.E. Perry, A Study of the Reynolds-Shear-Stress Spectra in Zero-Pressure-Gradient Boundary Layers, 10th Australasian Fluid Mechanics Conference, University of Melbourne, 11–15 Dec, (1989), pp l5–18.

    Google Scholar 

  22. J.L. Lumley, Interpretation of Time Spectra measured in High-intensity Shear Flows, Phys. Fluids, 8, p.1065–1062, (1965)

    Article  Google Scholar 

  23. J.L. Lumley, Similarity and the Turbulent Energy Spectrum, Phys. Fluids, 10, p.855–858, (1967)

    Article  Google Scholar 

  24. J.L. Lumley and G.R. Newman, The Return to Isotropy of Homogeneous Turbulence, J. Fluid Mech., 82, pp. 161–178, (1977).

    Article  MathSciNet  MATH  Google Scholar 

  25. V.M. Canuto, A Dynamical Model for Turbulence I,II,III, Phys. Fluids, 8, pp.571–613, (1996).

    Article  MathSciNet  MATH  Google Scholar 

  26. P.A. Durbin and C.G. Speziale, Local Anisotropy in Strained Turbulence at High Reynolds Numbers, J. Fluids Engineering, 113, pp.707–709, (1991).

    Article  Google Scholar 

  27. M. Lee, J. Kim and P. Moin, Structure of turbulence at High Shear Rate, J. Fluid Mech., 216, pp.561–583, (1990).

    Article  Google Scholar 

  28. S. Corrsin, On local Isotropy in Turbulent Shear Flow, NACA R & M 58B11, (1958).

    Google Scholar 

  29. L.W. Browne, R.A. Antonia and D.A. Shah, Turbulent Energy Dissipation in a Wake, J. Fluid Mech., 179, pp.307–326, (1987).

    Article  Google Scholar 

  30. S.G. Saddoughi and S.V. Veeravalli, Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech., 268, (1994), pp.333–372.

    Article  Google Scholar 

  31. S.G. Saddoughi, Local isotropy in complex turbulent boundary layers at high Reynolds number, J. Fluid Mech., 348, (1997), pp.201–245.

    Article  MathSciNet  Google Scholar 

  32. Y. Tsuji, Peak position of dissipation spectrum in turbulent boundary layers, Phys. Rev. E, 59, (1999), pp.7235–7238.

    Google Scholar 

  33. Y. Tsuji and B. Dhruva, Intermittency feature of shear stress fluctuation in high-Reynolds-number turbulence, Physics of Fluids, 11, (1999), pp.3017–3025.

    Article  MATH  Google Scholar 

  34. R.A. Antonia and J. Kim, Isotropy of Small-scale Turbulence, Proc. Summer Program of the Center for Turbulence Research, Stanford, (1992).

    Google Scholar 

  35. H.H. Fernholz and P.J. Finley, The Incompressible Zero-Pressure-Gradient Turbulent Boundary Layer: An Assessment of the Data, Prog. Aerospace Sci., 32, 245 (1996).

    Article  Google Scholar 

  36. A.E. Perry and J.D. Li, Experimental Support for the Attached-Eddy Hypothesis in Zero-Pressure-Gradient Turbulent Boundary Layers, J. Fluid Mech., 218, 405 (1990).

    Article  Google Scholar 

  37. J. Schumacher, K.R. Sreenivasan, and P.K. Yeung, Derivative moments in turbulent shear flow, submitting, (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this paper

Cite this paper

Tsuji, Y. (2003). Anisotropy versus Universality in Shear Flow Turbulence. In: Kaneda, Y., Gotoh, T. (eds) Statistical Theories and Computational Approaches to Turbulence. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67002-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67002-5_9

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67004-9

  • Online ISBN: 978-4-431-67002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics