Linear Processes in Stratified Turbulence with Rotation or Mean Shear

  • Hideshi Hanazaki
Conference paper


Linear processes of the unsteady turbulence in stratified flow with system rotation or mean shear are analysed by the rapid distortion theory (RDT). In stratified rotating turbulence, the ratio of Coriolis parameter f to Brunt-Väisälä frequency N, i.e. f/N, determines the steady components of energy and the phase of energy/flux oscillation. On the other hand, unsteady aspects are dominated by stratification, and the energy/flux oscillates at frequency ~ 2N as in the flow with only stratification. For stratified shear flow, the energy or the flux again oscillates at frequency 2N, although the shear distorts the energy spectra so that they are more localized to smaller stream-wise wavenumbers (k 1 → 0). The results show that neither rotation nor mean shear affects the wave number components which dominate the buoyancy oscillation of the energy and the flux.


Large Eddy Simulation Direct Numerical Simulation Linear Process Direct Numerical Simulation Data Applicability Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bartello, P. Geostrophic adjustment and inverse cascades in rotating stratified turbulence. J. Atmos. Sci. 52, 4410–4428 (1995)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Batchelor, G. K., Proudman, I. The effect of rapid distortion on a fluid in turbulent motion. Q. J. Mech. Appl. Maths. 7, 83–103 (1954)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Bardina, J., Ferziger, J. H. & Rogallo, R. S. Effect of rotation on isotropic turbulence: computation and modelling. J. Fluid Mech. 154, 321–336 (1985)CrossRefGoogle Scholar
  4. 4.
    Cambon, C. Turbulence and vortex structures in rotating and stratified flows. Eur. J. Mech. B-Fluids 20, 489–510 (2001)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Derbyshire, S. H. & Hunt, J. C. R. ’Structure of turbulence in stably stratified atmospheric boundary layers; Comparison of large eddy simulations and theoretical results’. In: Waves and Turbulence in Stably Stratified Flows, ed. by S. D. Mobbs and J. C. King, (Clarendon Press 1993) pp. 23–59Google Scholar
  6. 6.
    Gerz, T. Schumann, U. & Elghobashi, S. E. Direct numerical simulation of stratified homogeneous turbulent shear flows. J. Fluid Mech. 200, 563–594 (1989)MATHCrossRefGoogle Scholar
  7. 7.
    Gerz, T. & Yamazaki, H. Direct numerical simulation of buoyancy-driven turbulence in stably stratified fluid. J. Fluid Mech. 249, 415–440 (1993)CrossRefGoogle Scholar
  8. 8.
    Hanazaki, H. ’On the transport mechanisms in stably stratified rotating turbulence’. In: Turbulence, Heat and Mass Transfer 3, ed. by Y. Nagano, K. Hanjalic & T. Tsuji, (Aichi Shuppan 2000) pp. 639–644Google Scholar
  9. 9.
    Hanazaki, H. Linear processes in stably and unstably stratified rotating turbulence. J. Fluid Mech. in press, (2002)Google Scholar
  10. 10.
    Hanazaki, H. & Hunt, J. C. R. Linear processes in unsteady stably stratified turbulence. J. Fluid Mech. 318, 303–337 (1996)MATHCrossRefGoogle Scholar
  11. 11.
    Hanazaki, H. & Hunt, J. C. R. ’Linear processes in unsteady stratified sheared turbulence’. In: IUTAM Symp. on Geometry and Statistics of Turbulence, ed. by T. Kambe, T. Nakano & T. Miyauchi, (Kluwer 2001) pp. 291–296Google Scholar
  12. 12.
    Hanazaki, H. & Hunt, J. C. R. Structures of unsteady stably stratified turbulence with mean shear. submitted to J. Fluid Mech. (2002)Google Scholar
  13. 13.
    Holt, S. E., Koseff, J. R. & Ferziger, J. H. A numerical study of the evolution and structure of homogeneous stably stratified turbulence. J. Fluid Mech. 237, 499–539 (1992)MATHCrossRefGoogle Scholar
  14. 14.
    Hunt, J. C. R., Stretch, D. D. & Britter, R. E. ’Length scales in stably stratified turbulent flows and their use in turbulence models’. In: Stably Stratified Flow and Dense Gas Dispersion, ed. by J. S. Puttock, (Clarendon Press 1988), pp. 285–321Google Scholar
  15. 15.
    Iida, O. & Nagano, Y. Coherent structure and heat transfer in geostrophic flow under density stratification. Phys. Fluids 11, 368–377 (1999)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Itsweire, E. C, Heiland, K. N. & Van Atta, C. W. The evolution of grid-generated turbulence in a stably stratified fluid. J. Fluid Mech. 162, 299–338 (1986)CrossRefGoogle Scholar
  17. 17.
    Jacobitz, F. G., Sarker, S. & Van Atta, C. W. Direct numerical simulation of the turbulence evolution in a uniformly sheared and stably stratified flow. J. Fluid Mech. 342, 231–261 (1997)MATHCrossRefGoogle Scholar
  18. 18.
    Kaltenbach, H. -J., Gerz, T. & Schumann, U. Large eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech. 280, 1–40 (1994)MATHCrossRefGoogle Scholar
  19. 19.
    Kaneda, Y. Single-particle diffusion in strongly stratified and/or rapidly rotating turbulence. J. Phys. Soc. Japan 69, 3847–3852 (2000)CrossRefGoogle Scholar
  20. 20.
    Kaneda, Y. & Ishida, T. Suppression of vertical diffusion in strongly stratified turbulence. J. Fluid Mech. 402, 311–327 (2000)MATHCrossRefGoogle Scholar
  21. 21.
    Kimura, Y. & Herring, J. R. Diffusion in stably stratified turbulence. J. Fluid Mech. 328, 253–269 (1996)MATHCrossRefGoogle Scholar
  22. 22.
    Komori, S. & Nagata, K. Effects of molecular diffusivities on counter-gradient scalar and momentum transfer in strongly stable stratification. J. Fluid Mech. 326, 205–237 (1996)CrossRefGoogle Scholar
  23. 23.
    Komori, S., Ueda, H., Ogino, F. & Mizushina, T. Turbulence structure in stably stratified open-channel flow. J. Fluid Mech. 130, 13–26 (1983)CrossRefGoogle Scholar
  24. 24.
    Lienhard, J. H. & Van Atta, C. W. The decay of turbulence in thermally stratified flow. J. Fluid Mech. 210, 57–112 (1990)CrossRefGoogle Scholar
  25. 25.
    Métais, O., Bartello, P., Garnier, E., Riley, J. J. & Lesieur, M. Inverse cascade in stably stratified rotating turbulence. Dyn. Atmos. Oceans 23, 193–203 (1996)CrossRefGoogle Scholar
  26. 26.
    Métais, O. & Herring, J. Numerical simulations of freely evolving turbulence in stably stratified fluids. J. Fluid Mech. 202, 117–148 (1989).CrossRefGoogle Scholar
  27. 27.
    Miles, J. W. On the stability of heterogeneous shear flow, J. Fluid Mech. 10, 496–508 (1961)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Piccirillo, P. & Van Atta, C. W. The evolution of a uniformly sheared thermally stratified turbulent flow. J. Fluid Mech. 334, 61–86 (1997)CrossRefGoogle Scholar
  29. 29.
    Riley, J. J., Metcalfe, R. W. & Weissman, M. A. ’Direct numerical simulations of homogeneous turbulence in density stratified fluids’. In: Nonlinear Properties of Internal Waves, AIP Conference Proc. vol.76, (American Institute of Physics 1981), pp. 79–112CrossRefGoogle Scholar
  30. 30.
    Rohr, J. J., Itsweire, E. C, Heiland, K. N. & Van Atta, C. W. Growth and decay of turbulence in a stably stratified shear flow. J. Fluid Mech. 195, 77–111 (1988)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Saffman, P. G. The large-scale structure of homogeneous turbulence. J. Fluid Mech. 27, 581–593 (1967)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    Staquet, C. & Godeferd, F. S. Statistical modelling and direct numerical simulations of decaying stably stratified turbulence. Part 1. Flow energetics. J. Fluid Mech. 360, 295–340 (1998)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Stretch, D. D. The dispersion of slightly dense contaminations in a turbulent boundary layer. Ph.D. Thesis, Dept. of Engineering, University of Cambridge (1986)Google Scholar
  34. 34.
    Townsend, A. A. The Structure of Turbulent Shear Flow. (Cambridge University Press 1976), pp. 429MATHGoogle Scholar
  35. 35.
    Tsujimura, S., Iida, O. & Nagano, Y. ’Effects of rotation on unstably stratified turbulence’. In: Proc. Int. Conf. on Turbulent Heat Transfer 2, Manchester, U. K. vol. 1, 5–58 – 5–71 (1998)Google Scholar
  36. 36.
    Yoon, K. & Warhaft, Z. The evolution of grid generated turbulence under conditions of stable thermal stratification. J. Fluid Mech. 215, 601–638 (1990).CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Hideshi Hanazaki
    • 1
  1. 1.Institute of Fluid ScienceTohoku UniversityAoba-ku, SendaiJapan

Personalised recommendations