Self-Similarity of Decaying Two-Dimensional Turbulence governed by the Charney—Hasegawa—Mima Equation

  • Takahiro Iwayama
  • Theodore G. Shepherd
  • Takeshi Watanabe
Conference paper


In decaying two-dimensional Navier—Stokes turbulence, Batchelor’s simi larity hypothesis fails due to the existence of coherent vortices. However, it has recently been shown that in decaying two-dimensional turbulence governed by the Charney—Hasegawa—Mima (CHM) equation
$$\frac{\partial }{{\partial t}}\left( {{\nabla ^2}\varphi - {\lambda ^2}\varphi } \right) + J\left( {\varphi ,{\nabla ^2}\varphi } \right) = D$$
where D is a damping, the one-point probability density functions of various physical fields are well described by Batchelor’s similarity hypothesis for wave numbers k « λ (the so-called AM regime) [1]. In this report, we extend this analysis to the dynamics of spectral energy transfers. It is shown that the energy flux exhibits self-similar scaling, and the relation between the energy spectrum and the energy flux predicted by the similarity theory holds well for scales larger than that of the energy maximum. However, this relation breaks down for scales smaller than that of the energy maximum, where the observed downscale energy transfers would, according to the similarity theory, require negative energy spectra.


Energy Spectrum Direct Numerical Simulation Energy Flux Positive Definite Function Asymptotic Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Iwayama, T. G. Shepherd, T. Watanabe: J. Fluid Mech. 456, 183 (2002)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    J. Pedlosky: Geophysical Fluid Dynamics, 2nd edn. (Springer, New York 1987)MATHCrossRefGoogle Scholar
  3. 3.
    G. K. Batchelor: Phys. Fluids Suppl. 12, 11–233 (1969)CrossRefGoogle Scholar
  4. 4.
    R. H. Kraichnan: Phys. Fluids 10, 1417 (1967)CrossRefGoogle Scholar
  5. 5.
    C. E. Leith: Phys. Fluid 11, 671 (1968)CrossRefGoogle Scholar
  6. 6.
    J. C. McWilliams: J. Fluid Mech. 219, 361 (1990)CrossRefGoogle Scholar
  7. 7.
    G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, W. R. Young: Phys. Rev. Lett. 66, 2735 (1991)CrossRefGoogle Scholar
  8. 8.
    J. B. Weiss, J. C. McWilliams: Phys. Fluids A 5, 608 (1993)MATHCrossRefGoogle Scholar
  9. 9.
    P. Bartello, T. Warn: J. Fluid Mech. 326, 357 (1996)MATHCrossRefGoogle Scholar
  10. 10.
    J. R. Chasnov: Phys. Fluids 9, 171 (1997)CrossRefGoogle Scholar
  11. 11.
    A. Bracco, J. C. McWilliams, G. Murante, A. Provenzale, J. B. Weiss: Phys. Fluids 12, 2931 (2000)CrossRefGoogle Scholar
  12. 12.
    G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, W. R. Young: Phys. Fluids A 4, 1314 (1992)MathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Benzi, M. Colella, M. Briscolini, P. Santangelo: Phys. Fluids A 4, 1036 (1992)MATHCrossRefGoogle Scholar
  14. 14.
    O. Cardoso, D. Marteau, P. Tabeling: Phys. Rev. E 49, 454 (1994)CrossRefGoogle Scholar
  15. 15.
    A. Siegel, J. B. Weiss: Phys. Fluids 9, 1988 (1997)CrossRefGoogle Scholar
  16. 16.
    T. Iwayama, H. Fujisaka, H. Okamoto: Prog. Theor. Phys. 98, 1219 (1997)CrossRefGoogle Scholar
  17. 17.
    A. E. Hansen, D. Marteau, P. Tabeling: Phys. Rev E 58, 7261 (1998)CrossRefGoogle Scholar
  18. 18.
    C. Sire, P.-H. Chavanis: Phys. Rev. E 61, 6644 (2000)MathSciNetCrossRefGoogle Scholar
  19. 19.
    T. Watanabe, T. Iwayama, H. Fujisaka: Phys. Rev. E 57, 1636 (1998)CrossRefGoogle Scholar
  20. 20.
    A. Hasegawa, K. Mima: Phys. Fluids 21, 87 (1978)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    V. D. Larichev, J. C. McWilliams: Phys. Fluids A 3, 938 (1991)CrossRefGoogle Scholar
  22. 22.
    T. Iwayama, T. Watanabe, T. G. Shepherd: J. Phys. Soc. Jpn. 70, 376 (2001)CrossRefGoogle Scholar
  23. 23.
    R. Fjortoft: Tellus 5, 225 (1953)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Takahiro Iwayama
    • 1
  • Theodore G. Shepherd
    • 2
  • Takeshi Watanabe
    • 1
    • 3
  1. 1.Graduate School of Science and TechnologyKobe UniversityKobeJapan
  2. 2.Department of PhysicsUniversity of TorontoTorontoCanada
  3. 3.Department of Systems EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations