Skip to main content

Self-Similarity of Decaying Two-Dimensional Turbulence governed by the Charney—Hasegawa—Mima Equation

  • Conference paper
Statistical Theories and Computational Approaches to Turbulence

Abstract

In decaying two-dimensional Navier—Stokes turbulence, Batchelor’s simi larity hypothesis fails due to the existence of coherent vortices. However, it has recently been shown that in decaying two-dimensional turbulence governed by the Charney—Hasegawa—Mima (CHM) equation

$$\frac{\partial }{{\partial t}}\left( {{\nabla ^2}\varphi - {\lambda ^2}\varphi } \right) + J\left( {\varphi ,{\nabla ^2}\varphi } \right) = D$$

where D is a damping, the one-point probability density functions of various physical fields are well described by Batchelor’s similarity hypothesis for wave numbers k « λ (the so-called AM regime) [1]. In this report, we extend this analysis to the dynamics of spectral energy transfers. It is shown that the energy flux exhibits self-similar scaling, and the relation between the energy spectrum and the energy flux predicted by the similarity theory holds well for scales larger than that of the energy maximum. However, this relation breaks down for scales smaller than that of the energy maximum, where the observed downscale energy transfers would, according to the similarity theory, require negative energy spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Iwayama, T. G. Shepherd, T. Watanabe: J. Fluid Mech. 456, 183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Pedlosky: Geophysical Fluid Dynamics, 2nd edn. (Springer, New York 1987)

    Book  MATH  Google Scholar 

  3. G. K. Batchelor: Phys. Fluids Suppl. 12, 11–233 (1969)

    Article  Google Scholar 

  4. R. H. Kraichnan: Phys. Fluids 10, 1417 (1967)

    Article  Google Scholar 

  5. C. E. Leith: Phys. Fluid 11, 671 (1968)

    Article  Google Scholar 

  6. J. C. McWilliams: J. Fluid Mech. 219, 361 (1990)

    Article  Google Scholar 

  7. G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, W. R. Young: Phys. Rev. Lett. 66, 2735 (1991)

    Article  Google Scholar 

  8. J. B. Weiss, J. C. McWilliams: Phys. Fluids A 5, 608 (1993)

    Article  MATH  Google Scholar 

  9. P. Bartello, T. Warn: J. Fluid Mech. 326, 357 (1996)

    Article  MATH  Google Scholar 

  10. J. R. Chasnov: Phys. Fluids 9, 171 (1997)

    Article  Google Scholar 

  11. A. Bracco, J. C. McWilliams, G. Murante, A. Provenzale, J. B. Weiss: Phys. Fluids 12, 2931 (2000)

    Article  Google Scholar 

  12. G. F. Carnevale, J. C. McWilliams, Y. Pomeau, J. B. Weiss, W. R. Young: Phys. Fluids A 4, 1314 (1992)

    Article  MathSciNet  Google Scholar 

  13. R. Benzi, M. Colella, M. Briscolini, P. Santangelo: Phys. Fluids A 4, 1036 (1992)

    Article  MATH  Google Scholar 

  14. O. Cardoso, D. Marteau, P. Tabeling: Phys. Rev. E 49, 454 (1994)

    Article  Google Scholar 

  15. A. Siegel, J. B. Weiss: Phys. Fluids 9, 1988 (1997)

    Article  Google Scholar 

  16. T. Iwayama, H. Fujisaka, H. Okamoto: Prog. Theor. Phys. 98, 1219 (1997)

    Article  Google Scholar 

  17. A. E. Hansen, D. Marteau, P. Tabeling: Phys. Rev E 58, 7261 (1998)

    Article  Google Scholar 

  18. C. Sire, P.-H. Chavanis: Phys. Rev. E 61, 6644 (2000)

    Article  MathSciNet  Google Scholar 

  19. T. Watanabe, T. Iwayama, H. Fujisaka: Phys. Rev. E 57, 1636 (1998)

    Article  Google Scholar 

  20. A. Hasegawa, K. Mima: Phys. Fluids 21, 87 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  21. V. D. Larichev, J. C. McWilliams: Phys. Fluids A 3, 938 (1991)

    Article  Google Scholar 

  22. T. Iwayama, T. Watanabe, T. G. Shepherd: J. Phys. Soc. Jpn. 70, 376 (2001)

    Article  Google Scholar 

  23. R. Fjortoft: Tellus 5, 225 (1953)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this paper

Cite this paper

Iwayama, T., Shepherd, T.G., Watanabe, T. (2003). Self-Similarity of Decaying Two-Dimensional Turbulence governed by the Charney—Hasegawa—Mima Equation. In: Kaneda, Y., Gotoh, T. (eds) Statistical Theories and Computational Approaches to Turbulence. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67002-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67002-5_24

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67004-9

  • Online ISBN: 978-4-431-67002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics