Internal-Wave-Packet Propagation and Breaking

  • George F. Carnevale
  • Marco Briscolini
  • Paolo Orlandi
  • Rudolf C. Kloosterziel
Conference paper


Packets of internal waves propagating vertically through the ocean can locally overturn the fluid producing turbulence and mixing. In order to explore this phenomena, two kinds of numerical simulations are performed. In the first, internalwave packets are followed as they propagate. It is found that the breaking of wave crests within the packet can lead to overturning events on the scale observed in the ocean, and the subsequent turbulence can form a continuous wake. In the second kind of simulation, an attempt is made to capture the transition from breaking internal waves to the small-scale turbulence they generate. Evidence is presented for a transition in the energy spectra from the anisotropic k -3 buoyancy range to the small-scale k -5/3 isotropic inertial range. Density structures that form during wave breaking are analyzed and regions of mixing associated with the breaking events are visualized.


Wave Packet Internal Wave Standing Wave Eddy Viscosity Force Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Alford, R. Pinkel: J. Phys. Ocean 30, 805–832 (2000)CrossRefGoogle Scholar
  2. 2.
    P. Bouruet-Aubertot, J. Sommeria, C. Staquet: J. Fluid Mech. 285, 265–301 (1995)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    P. Bouruet-Aubertot, J. Sommeria, C. Staquet: Dyn. Atmos. Oceans 23, 357–69 (1996)CrossRefGoogle Scholar
  4. 4.
    G.F. Carnevale, M. Briscolini, ‘Large Eddy Simulation of Oceanic Fine Structure,’ In: Aha Huliko’a, Internal Wave Modeling, Proceedings, Hawaiian Winter Workshop, University of Hawaii, January (19–22, 1999)eds. P. Müller and D. Henderson (1999)Google Scholar
  5. 5.
    G.F. Carnevale, Orlandi, P., ‘Propagation of internal wave packets in the thermocline,’ In: Proceedings of the (2000 Summer Program, Center for Turbulence Research, Stanford University pp. 1(19–130)(2000)Google Scholar
  6. 6.
    G.F. Carnevale, M. Briscolini, P. Orlandi: J. Fluid Mech. 427(205–239) (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    A.E. Gargett, P.J. Hendricks, T.B. Sanford, T.R. Osborn, A.J. Williams: J. Phys. Ocean. 11, 1258–1271 (1981)CrossRefGoogle Scholar
  8. 8.
    A.E. Gargett: J. Fluid Mech. 159, 397–407 (1985)CrossRefGoogle Scholar
  9. 9.
    C. Garret, W. Munk: J. Geophys. Res., 80, 291–297 (1975)CrossRefGoogle Scholar
  10. 10.
    C.H. Gibson: J. Fluid Mech. 168, 89–117 (1986)CrossRefGoogle Scholar
  11. 11.
    M.C. Gregg: J. Phys. Ocean. 7, 436–454 (1977)CrossRefGoogle Scholar
  12. 12.
    M.C. Gregg: J. Geophys. Res., 94, 9686–9698 (1989)CrossRefGoogle Scholar
  13. 13.
    J.R. Herring, O. Metais: J. Fluid Mech., 235, 103–121 (1992)MATHCrossRefGoogle Scholar
  14. 14.
    Holloway, G. ‘Theoretical approaches to interactions among internal waves, turbulence and finestructure’ In: Nonlinear Properties of Internal Waves, AIP conference proceedings No. 76, (ed. B.J. West. AIP, New York.) (1981)Google Scholar
  15. 15.
    G. Holloway: Dyn. Atmos. Ocean 21107–122 (1983)CrossRefGoogle Scholar
  16. 16.
    G. Holloway: J. Physical Oceanography 162179–2183 (1986)CrossRefGoogle Scholar
  17. 17.
    M. Lesieur, R. Rogallo: Phys. Fluids A 1, 718–722 (1989)CrossRefGoogle Scholar
  18. 18.
    M. Lesieur: Turbulence in fluids(Dordrecht; Boston : Kluwer Academic Publishers (1997)MATHCrossRefGoogle Scholar
  19. 19.
    J.L. Lumley: J. Atmos. Sci. 21, 99–102 (1964)CrossRefGoogle Scholar
  20. 20.
    A.D. McEwan: J. Fluid Mech. 128, 47–57 (1983)CrossRefGoogle Scholar
  21. 21.
    S.A. Orszag: J. Atmos. Sci., 28, 1074 (1971)CrossRefGoogle Scholar
  22. 22.
    O.M. Phillips, ‘On the Bolgiano and Lumley-Shur theories of the buoyancy subrange’ In: Atmospheric Turbulence and Radio Wave Propagation Proceedings of the International Colloquium, Moscow 1965 (A.M. Yaglom and V.I. Tatarsky, Eds, Nauka, Moscow, (1967) pp. 121–128.Google Scholar
  23. 23.
    D.A. Siegel, J.A. Domaradzki: Journal of Physical Oceanography, 24, 2353–2386 (1994)CrossRefGoogle Scholar
  24. 24.
    B.R. Sutherland: Phys. Fluids 11, 1081–1090 (1999)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    B.R. Sutherland: J. Fluid Mech. 429, 343–380 (2001)MATHCrossRefGoogle Scholar
  26. 26.
    J.R. Taylor: J. Fluid Mech. 239, 309–340 (1992)CrossRefGoogle Scholar
  27. 27.
    S.A. Thorpe: J. Phys. Ocean., 29, 1085–1095 (1999)MathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Weinstock: J. Phys. Ocean. 15, 475–477 (1985)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • George F. Carnevale
    • 1
  • Marco Briscolini
    • 2
  • Paolo Orlandi
    • 3
  • Rudolf C. Kloosterziel
    • 4
  1. 1.Scripps Institution of OceanographyUniversity of California San DiegoLa JollaUSA
  2. 2.Dipartimento di Meccanica e AeronauticaUniversity of RomeRomaItaly
  3. 3.IBM Italia S.p.A.RomaItaly
  4. 4.School of Ocean and Earth Science and TechnologyUniversity of HawaiiHonoluluUSA

Personalised recommendations