Advertisement

Toward a Statistical Ocean Dynamics

  • Greg Holloway
Conference paper

Abstract

Ocean variability occurs across such a wide range of scales that no computer, existing or presently foreseen, can directly represent the huge number of degrees of freedom. Traditionally the problem has been approached in terms of ad hoc subgridscale mixing hypotheses. In this article we explore first steps toward reformulating the question from a perspective of nonequilibrium statistical dynamics. The degrees of freedom explicitly represented by ocean models are seen as moments of probabilities of possible realizations of oceans. Influence of the many unrepresented degrees of freedom appear as “generalized thermodynamic forces” due to gradients of entropy with respect to explictly represented moments. Examples of practical implementation of these ideas are described for (a) effects of eddy-topography interaction in mean ocean circulation and (b) effects of different conduction coefficients for heat and for salt.

Keywords

Maximum Entropy Eddy Viscosity Potential Vorticity Eddy Diffusion Thermodynamic Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Coveney, R. Highfield: The Arrow of Time, (Fawcett-Columbine, New York 1992, 378 pp.)Google Scholar
  2. 2.
    A. Katz: Principles of Statistical Mechanics (W. H. Freeman & Co., San Francisco 1967, 188 pp)Google Scholar
  3. 3.
    G. W. Paltridge: Quart. J. R. Met. Soc. 101, 475 (1975)CrossRefGoogle Scholar
  4. 4.
    G. W. Paltridge: Quart. J. R. Met. Soc. 104, 927 (1978)CrossRefGoogle Scholar
  5. 5.
    H. Ozawa, A. Ohmura: J. Climate 10, 441 (1997)CrossRefGoogle Scholar
  6. 6.
    R. Lorenz, J. I. Lunine, P. G. Withers, C. P. McKay: Geophys. Res. Lttrs. 98, 415 (2001)CrossRefGoogle Scholar
  7. 7.
    R. Salmon, G. Holloway, M. C. Hendershott: J. Fluid Mech. 75, 691 (1976)MATHCrossRefGoogle Scholar
  8. 8.
    G. Holloway: Ann. Rev. Fluid Mech. 18, 91 (1986)MathSciNetCrossRefGoogle Scholar
  9. 9.
    R. Salmon: Lectures on Geophysical Fluid Dynamics (Oxford U. Press 1998, 378 PP)Google Scholar
  10. 10.
    J. Miller: Phys. Rev. Lett. 65, 2137 (1990)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    R. Robert, J. Sommeria: J. Fluid Mech. 229, 291 (1991)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    R. Robert, C. Rosier: J. Stat. Phys. 86, 481 (1997)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    P. H. Chavanis, J. Sommeria: Phys. Rev. Lett. 78, 3302 (1997)CrossRefGoogle Scholar
  14. 14.
    E. Kazantsev, J. Sommeria, J. Verron: J. Phys. Oceanogr.28, 1017 (1998)CrossRefGoogle Scholar
  15. 15.
    I. Polyakov: J. Phys. Oceanogr. 31, 2255 (2001)CrossRefGoogle Scholar
  16. 16.
    L. Onsager: Phys. Rev. 37, 405 (1931)CrossRefGoogle Scholar
  17. 17.
    L. Onsager: Phys. Rev. 38, 2265 (1931)MATHCrossRefGoogle Scholar
  18. 18.
    L. Onsager, S. Machlup: Phys. Rev. 91, 1505 (1953)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    J. R. Herring: J. Atmos. Sci. 34, 1731 (1977)CrossRefGoogle Scholar
  20. 20.
    R. H. Kraichnan: J. Fluid Mech. 5, 497 (1959)MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    G. Holloway: J. Phys. Oceanogr. 8, 414 (1978)CrossRefGoogle Scholar
  22. 22.
    R. H. Kraichnan: J. Fluid Mech. 47, 512 (1971)Google Scholar
  23. 23.
    G. Holloway: J. Fluid Mech. 184, 463 (1987)MATHCrossRefGoogle Scholar
  24. 24.
    G. F. Carnevale, U. Frisch, R. Salmon: J. Phys. A. 14, 1701 (1981)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    G. Holloway: J. Phys. Oceanogr 22, 1033 (1992)CrossRefGoogle Scholar
  26. 26.
    A. Alvarez, J. Tintore, G. Holloway, M. Eby, J. M. Beckers: J. Geophys. Res. 99, 16053 (1994)CrossRefGoogle Scholar
  27. 27.
    M. Eby, G. Holloway: J Phys Oceanogr 24, 2577 (1994)CrossRefGoogle Scholar
  28. 28.
    J. Fyfe, G. Marinone: B.C. Atmos-Ocean 33, 613 (1995)CrossRefGoogle Scholar
  29. 29.
    G. Holloway, T. Sou, M. Eby: J. Mar. Res. 53, 539 (1995)CrossRefGoogle Scholar
  30. 30.
    B. K. Pal, G. Holloway: Cont. Shelf Res. 16, 1591 (1996)CrossRefGoogle Scholar
  31. 31.
    T. Sou, G. Holloway, M. Eby: J. Geophys. Res. 101, 16449 (1996)CrossRefGoogle Scholar
  32. 32.
    M. H. England, G. Holloway: J. Geophys. Res. 103, 15885 (1998)CrossRefGoogle Scholar
  33. 33.
    S. G. Marinone: J. Geophys. Res. 103, 18437 (1998)CrossRefGoogle Scholar
  34. 34.
    L. Nazarenko, G. Holloway, N. Tausnev: J. Geophys. Res. 103, 31003 (1998)CrossRefGoogle Scholar
  35. 35.
    G. Holloway, T. Sou: J. Phys. Oceanogr. 26, 1088 (1996)CrossRefGoogle Scholar
  36. 36.
    G. Holloway: J. Phys. Oceanogr. 27, 1153 (1997)CrossRefGoogle Scholar
  37. 37.
    W. J. Merryfield: J. Fluid Mech. 354, 345 (1998)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    J. S. Frederiksen: J. Atmos. Sci. 56, 1481 (1999)CrossRefGoogle Scholar
  39. 39.
    W. J. Merryfield, P. F. Cummins, G. Holloway: J. Phys. Oceanogr. 31, 1880 (2001)CrossRefGoogle Scholar
  40. 40.
    J. S. Turner: J. Fluid Mech. 33, 639 (1968)CrossRefGoogle Scholar
  41. 41.
    D. B. Altman, A. E. Gargett: Amer. Soc. Civil Engr. (E. List and G. Jirka, eds.,1990)Google Scholar
  42. 42.
    J. D. Nash, J. N. Mourn: J. Phys. Oceanogr., subm. (2002)Google Scholar
  43. 43.
    W. J. Merryfield, G. Holloway, A. E. Gargett: Geophys. Res. Lters 25, 2773 (1998)CrossRefGoogle Scholar
  44. 44.
    A. E. Gargett, W. J. Merryfield, G. Holloway: J. Geophys. Res., subm. (2002)Google Scholar
  45. 45.
    G. Holloway: Dyn. Atmos. Oceans. 12, 107 (1988)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Greg Holloway
    • 1
  1. 1.Institute of Ocean SciencesSidneyCanada

Personalised recommendations