Advertisement

Structural and Statistical Aspects of Stably Stratified Turbulence

  • Jackson R. Herring
  • Yoshifumi Kimura
Conference paper

Abstract

Stably stratified turbulence is examined via direct numerical simulation (DNS) and elementary statistical theory. Such flows decay more slowly than isotropic turbulence with the same initial conditions. We offer an explanation in terms of the diminution of energy transfer to small scales because of phase mixing nature of gravity waves. Structures in stratified flows (pancakes) are distinctly different from those of isotropic turbulence (vortex tubes). Thus waves of smaller frequencies survive. Finally we compare probability distribution functions (PDFs) for the Eulerian acceleration for stratified flow to isotropic PDF’s. The PDF’s of stable stratification are significantly more Gaussian than those of isotropic turbulence, suggesting that the underlying assumptions of two—point closures may be more applicable to stratified turbulence than to isotropic flows.

Keywords

Direet Numerieal Simulation Probability Distribution Function Vortex Tube Inertial Range Kinetic Energy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leith, C. E. 1968: Diffusion approximation for turbulent scalar fields. Phys. Fluids, 11, 1612–1617.MATHCrossRefGoogle Scholar
  2. 2.
    Kaneda, Y. and Ishida, T. 2000: Suppression of vertical diffusion in strongly stratified turbulence. J. Fluid Mech., 402, 311–327.MATHCrossRefGoogle Scholar
  3. 3.
    Britter, R. E., Hunt, J.C.R., G.L. Marsh, and W.H. Snyder 1993: The effects of stable stratification on the turbulent diffusion and the decay of grid turbulence. J. Fluid Mech., 127, 27–44.CrossRefGoogle Scholar
  4. 4.
    Kimura, Y. and Herring, J. R. 1996: Diffusion in stably stratified turbulence. J. Fluid Mech., 328, 253–263.MATHCrossRefGoogle Scholar
  5. 5.
    Kolmogorov, A. N. 1942: On the degeration of isotropic turbulence in an incompressible viscous liquid. Dok. Akad. Nauk. SSSR, 31, 538–541.Google Scholar
  6. 6.
    Godeferd, F.S. and C. Cambon 1994: Detailed investigation of energy transfer in homogeneous stratified turbulence Phys. Fluids, 6 (6), 2084–2100.MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Sanderson, R. C, A. D. Leonard, J. R. Herring, and J. C. Hill, 1991: ‘Fossil and active turbulence’. In: Turbulence and coherent structures: 89: Organized structures and turbulence in fluid mechanics, Grenoble, 18–21 September 1989, O. Métais and M. Lesieur, Eds., Kluwer Academic Press, pp 429–448.Google Scholar
  8. 8.
    Yeung, P. K. and Zhou, Y. 1998: Numerical study of rotating turbulence with external forcing. Phys. Fluids, 10, 2895–3244.CrossRefGoogle Scholar
  9. 9.
    Nastrom, G.D., Gage, K.S., and Jasperson, W.H. 1984: Atmospheric kinetic energy spectrum, 100--104km. Nature, 310, 36–38.CrossRefGoogle Scholar
  10. 10.
    Gage, K.S. 1979: Evidence for a k - 5/3 law inertial range in mesoscale two- dimensional turbulence. J. Atmos. Sci., 36, 1950–1954.CrossRefGoogle Scholar
  11. 11.
    Riley, J.J., Metcalfe, R.W., and Weissman, M.A. 1982: Direct numerical simulations of homogeneous turbulence in density stratified fluids. In: Proc. AIP Conf. on Nonlinear Properties of Internal Waves Bruce J. West Ed, 79–112.Google Scholar
  12. 12.
    Lilly, D.K. 1983: Stratified turbulence and the Mesoscale variability of the atmosphere. J. Atmos. Sci., 40, 749–761.CrossRefGoogle Scholar
  13. 13.
    Majda, A. J., Grote, M. J. 1997: Model dynamics and collapse in decaying strongly stratified flows. Phys. Fluids, 9 (10), 2932–2940.MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Herring, J. R., and O. Métais 1992: Spectral Transfer and Bispectra for Turbulence with Passive Scalars. J. Fluid Mech., 235, 103–121.MATHCrossRefGoogle Scholar
  15. 15.
    Lindborg, E. 1999: Can the atmospheric energy spectrum be explained by two-dimensional turbulence. J. Fluid Mech., 388, 259–288.MATHCrossRefGoogle Scholar
  16. 16.
    VanZandt, T.E. 1982: A universal spectrum of buoyancy waves in the atmosphere. Geophys. Res. Lett. 9, 575–578.CrossRefGoogle Scholar
  17. 17.
    Hanazaki, H. and Hunt, J. C. R. 2001: Linear processes in unsteady stably stratified turbulence. J. Fluid Mech., 318, 303–337.CrossRefGoogle Scholar
  18. 18.
    Corrsin, S. 1959: Progress report on some turbulent diffusion research. In: Atmospheric Diffusion and Air Pollution ed. F. N. Frenkiel & P. A. Shepard. Advances in Geophysics, 6, 161–164. Academic Press.Google Scholar
  19. 19.
    Hasselman, K., Munk, W. and Mcdonald, G. 1963: Bispectra of ocean waves. In: Time Series Analysis M. Rosenblatt, ed., 125–139. Wiley & Sons, New York.Google Scholar
  20. 20.
    Wyngaard, J. C. and Tennekes, H. 1970: Measurements of the small-scale structure of turbulence at moderate Reynolds numbers. Phys. Fluids, 13, 1962–1969.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Jackson R. Herring
    • 1
  • Yoshifumi Kimura
    • 2
  1. 1.N.C.A.R.BoulderUSA
  2. 2.Graduate School of MathematicsNagoya UniversityChikusa-ku, NagoyaJapan

Personalised recommendations