Lyapunov Exponent of the System Described by Kuramoto-Sivashinsky Equation

  • Hiroshi Shibata
Conference paper


The dynamics of the system described by Kuramoto-Sivashinsky equation (SKSE) is studied in this paper. The Lyapunov exponent of the SKSE fluctuates around at the value of 0. Then the two time correlation function (TTCF) for the SKSE is calculated and it is shown that the TTCF decays algebraically. Those results strongly suggest that the large deviation statistics do not hold on the SKSE.


State Vector Lyapunov Exponent System Size Dissipative Structure Finite Dimensional Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical Systems Approach to Turbulence. Cambridge University Press, Cambridge, 1998.MATHCrossRefGoogle Scholar
  2. 2.
    U. Frisch. Turbulence, Cambridge University Press, Cambridge, 1995.MATHGoogle Scholar
  3. 3.
    M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65(1993)851.CrossRefGoogle Scholar
  4. 4.
    X.-L. Qui and P. Tong, Phys. Rev. Lett. 87(2001)094501.CrossRefGoogle Scholar
  5. 5.
    A. La Porta, G.A. Voth, A.M. Crawford, J. Alexander, E. Bodenschatz, Nature 409(2001)1017.CrossRefGoogle Scholar
  6. 6.
    B.I. Shraiman, E.D. Siggia, Nature 405(2000)639.CrossRefGoogle Scholar
  7. 7.
    D.A. Egolf, I.V. Melnikov, W. Pesch, R.E. Ecke, Nature 404(2000)733.CrossRefGoogle Scholar
  8. 8.
    H. Fujisaka, H. Suetani, T. Watanabe, Prog. Theor. Phys. 139(Suppl.) (2000)70.CrossRefGoogle Scholar
  9. 9.
    H. Mori, Y. Kuramoto, Dissipative Structures and Chaos, Springer, Berlin, 1998.MATHCrossRefGoogle Scholar
  10. 10.
    P. Manville, Dissipative Structures and Weak Turbulence, Academic Press, Boston, 1990.Google Scholar
  11. 11.
    Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence, Springer, Berlin, 1984.MATHCrossRefGoogle Scholar
  12. 12.
    H. Chaté, P. Manneville, Phys. Rev. Lett. 58(1987)112.CrossRefGoogle Scholar
  13. 13.
    P. Manneville, in: O. Pironneau (Ed.), Macroscopic Modeling of Turbulent Flows, Lecture Notes in Physics, Vol.230, Springer, Berlin, 1985, p.1.Google Scholar
  14. 14.
    G.I. Sivashinsky, Acta Astronaut 4(1977)1177.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Y. Kuramoto, T. Tsuzuki, Prog. Theor. Phys. 55(1976)356.CrossRefGoogle Scholar
  16. 16.
    A. Katok, B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.MATHCrossRefGoogle Scholar
  17. 17.
    E. Ott, Chaos in Dynamical Systems, Cambridge University Press, Cambridge, 1993.MATHGoogle Scholar
  18. 18.
    H.G. Schuster, Deterministic Chaos, VCH, Weinheim, 1988.Google Scholar
  19. 19.
    G.M. Zaslaysky, Physics of Chaos in Hamiltonian Systems, Imperial College Press, London, 1998.Google Scholar
  20. 20.
    C. Anteneodo, C. Tsallis, Phys. Rev. Lett. 80(1998)5313.CrossRefGoogle Scholar
  21. 21.
    R. Cafiero, A. Valleriani, J.L. Vega, Eur. Phys. J. B 4(1998)405.CrossRefGoogle Scholar
  22. 22.
    K. Sneppen, J. Krug, M.H. Jensen, C. Jayaprakasch, T. Bohr, Phys. Rev. A 46(1992)R7351.CrossRefGoogle Scholar
  23. 23.
    P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge University Press, Cambridge, 1998.MATHCrossRefGoogle Scholar
  24. 24.
    C. Beck, F. Schlögl, Thermodynamics of Chaotic systems, Introduction, Cambridge University Press, Cambridge, 1998.Google Scholar
  25. 25.
    R.S. Ellis, Entropy, Large Deviations, and Statistical Mechanics, Springer-Verlag, New York, 1985.MATHCrossRefGoogle Scholar
  26. 26.
    D. Ruelle, Thermodynamic Formalism, Addison-Wesley, Mass., 1978.MATHGoogle Scholar
  27. 27.
    O.E. Lanford, in: A. Lenard (Ed.), Statistical Mechanics and Mathematical Problems, Lecture Notes in Physics Vol.20, Springer, Berlin, 1973, p.1.CrossRefGoogle Scholar
  28. 28.
    H. Shibata, Green-Kubo formula derived from large deviation statistics, Preprint.Google Scholar
  29. 29.
    H. Fujisaka, M. Inoue, Phys. Rev. A 41(1990) 5302.MathSciNetCrossRefGoogle Scholar
  30. 30.
    H. Mori, H. Hata, T. Horita, T. Kobayashi, Prog. Theor. Phys. 99(Suppl.) (1989)1, and references cited therein.MathSciNetCrossRefGoogle Scholar
  31. 31.
    H. Fujisaka, M. Inoue, Prog. Theor. Phys. 77(1987)1334.MathSciNetCrossRefGoogle Scholar
  32. 32.
    M. Sano, S. Sato, Y. Sawada, Prog. Theor. Phys. 76(1986)945.MathSciNetCrossRefGoogle Scholar
  33. 33.
    R. Ishizaki, T. Horita, H. Mori, Prog. Theor. Phys. 89(1993)947.MathSciNetCrossRefGoogle Scholar
  34. 34.
    R. Ishizaki, T. Horita, T. Kobayashi, H. Mori, Prog. Theor. Phys. 85(1991)1013.CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Hiroshi Shibata
    • 1
  1. 1.Department of General Education, Faculty of EngineeringSojo UniversityKumamotoJapan

Personalised recommendations