Statistics of the Energy Dissipation Rate in Turbulence

  • Ken-ichi Kajita
  • Toshiyuki Gotoh


Velocity field statistics and the locally volume-averaged energy dissipation rate ε r in the inertial and dissipation ranges of three-dimensional, homogeneous, steady turbulent flow are studied using high-resolution direct numerical simulation (DNS) with N = 10243 grid points. The Taylor microscale Reynolds numbers are 381 and 460. The structure functions and their scaling exponents are measured and found to be anomalous. When the size of the local volume-average is between the dissipation and the inertial ranges, the body of the PDF for In ε r is very close to Gaussian; however, its tail decays faster than the Gaussian PDF, and this deviation grows with increasing volume. The scaling exponents of the moments of ε r are also examined and found to be consistent with those measured in experiments.


Structure Function Direct Numerical Simulation Energy Dissipation Rate Inertial Range Dissipation Range 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 9 (1941). “Dissipation of energy in locally isotropic turbulence,” Dokl. Akad. Nauk SSSR, 32, 16–18 (1941).Google Scholar
  2. 2.
    A. C. Monin and A. M. Yaglom Statistical Fluid Mechanics, Vol. II, MIT Press, Cambridge (1975).Google Scholar
  3. 3.
    U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, (1995) .MATHGoogle Scholar
  4. 4.
    A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number,” J. Fluid Mech. 13, 82 (1962) .MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    G. Stolovitzky, P. Kailasnath, and K. R. Sreenivasan, “Kolmogorov’s refined similarity hypotheses,” Phys. Rev. Lett. 69, 1178 (1992) .CrossRefGoogle Scholar
  6. 6.
    L. Stolovitzky and K. R. Sreenivasan, “Scaling of structure functions,” Phys. Rev. E 48, R33 (1993) .CrossRefGoogle Scholar
  7. 7.
    A. Praskovsky, “Experimental verification of the Kolmogorov refined similarity hypothesis,” Phys. Fluids A 4, 2589 (1992).CrossRefGoogle Scholar
  8. 8.
    S. G. Saddoughi and S. V. Veeravalli, “Local isotropy in turbulent boundary layers at high Reynolds number,” J. Fluid Mech. 268, 333 (1994).CrossRefGoogle Scholar
  9. 9.
    A. Praskovsky and S. Oncley, “Comprehensive measurements of the intermittency exponent in high Reynolds number turbulent flows,” Fluid Dyn. Res. 21, 331 (1997) .CrossRefGoogle Scholar
  10. 10.
    W. Van de Water and J. A. Herweijer, “High-order structure functions of turbulence,” J. Fluid Mech. 387, 3 (1999).MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    T. Zhou and R. A. Antonia, “Reynolds number dependence of the small-scale structure of grid turbulence,” J. Fluid Mech. 406, 81 (2000) .MATHCrossRefGoogle Scholar
  12. 12.
    L. P. Wang, S. Chen, J. Brasseur and J. C. Wyngaard, “Examination of fundamental hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations, Part I. Velocity field,” J. Fluid Mech. 309, 113 (1996).MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    T. Gotoh and D. Fukayama, “Pressure spectrum in homogeneous turbulence,” Phys. Rev. Lett. 86, 3775 (2001).CrossRefGoogle Scholar
  14. 14.
    T. Gotoh, D. Fukayama, and T. Nakano, “Velocity field statistics in homogeneous steady turbulence obtained using a high resolution DNS,” Phys. Fluids, to appear, (2002) .Google Scholar
  15. 15.
    K. R. Sreenivasan, “On the universality of the Kolmogorov constant,” Phys. Fluids 7, 2778 (1995) .MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    T. Arimitsu and N. Arimitsu, “Analysis of turbulence by statistics based on generalized entropies,” Physica A 295, 177 (2001) .MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    A. S. Gurvich and A. M. Yaglom, “Breakdown of eddies and probability distributions for small-scale turbulence,” Phys. Fluids Suppl. 10, S59 (1967).MATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Ken-ichi Kajita
    • 1
  • Toshiyuki Gotoh
    • 1
  1. 1.Department of System EngineeringNagoya Institute of TechnologyShowa-ku, NagoyaJapan

Personalised recommendations