Skip to main content

Statistics of the Energy Dissipation Rate in Turbulence

  • Conference paper
Statistical Theories and Computational Approaches to Turbulence

Abstract

Velocity field statistics and the locally volume-averaged energy dissipation rate ε r in the inertial and dissipation ranges of three-dimensional, homogeneous, steady turbulent flow are studied using high-resolution direct numerical simulation (DNS) with N = 10243 grid points. The Taylor microscale Reynolds numbers are 381 and 460. The structure functions and their scaling exponents are measured and found to be anomalous. When the size of the local volume-average is between the dissipation and the inertial ranges, the body of the PDF for In ε r is very close to Gaussian; however, its tail decays faster than the Gaussian PDF, and this deviation grows with increasing volume. The scaling exponents of the moments of ε r are also examined and found to be consistent with those measured in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. N. Kolmogorov, “The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers,” Dokl. Akad. Nauk SSSR 30, 9 (1941). “Dissipation of energy in locally isotropic turbulence,” Dokl. Akad. Nauk SSSR, 32, 16–18 (1941).

    Google Scholar 

  2. A. C. Monin and A. M. Yaglom Statistical Fluid Mechanics, Vol. II, MIT Press, Cambridge (1975).

    Google Scholar 

  3. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge University Press, (1995) .

    MATH  Google Scholar 

  4. A. N. Kolmogorov, “A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number,” J. Fluid Mech. 13, 82 (1962) .

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Stolovitzky, P. Kailasnath, and K. R. Sreenivasan, “Kolmogorov’s refined similarity hypotheses,” Phys. Rev. Lett. 69, 1178 (1992) .

    Article  Google Scholar 

  6. L. Stolovitzky and K. R. Sreenivasan, “Scaling of structure functions,” Phys. Rev. E 48, R33 (1993) .

    Article  Google Scholar 

  7. A. Praskovsky, “Experimental verification of the Kolmogorov refined similarity hypothesis,” Phys. Fluids A 4, 2589 (1992).

    Article  Google Scholar 

  8. S. G. Saddoughi and S. V. Veeravalli, “Local isotropy in turbulent boundary layers at high Reynolds number,” J. Fluid Mech. 268, 333 (1994).

    Article  Google Scholar 

  9. A. Praskovsky and S. Oncley, “Comprehensive measurements of the intermittency exponent in high Reynolds number turbulent flows,” Fluid Dyn. Res. 21, 331 (1997) .

    Article  Google Scholar 

  10. W. Van de Water and J. A. Herweijer, “High-order structure functions of turbulence,” J. Fluid Mech. 387, 3 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Zhou and R. A. Antonia, “Reynolds number dependence of the small-scale structure of grid turbulence,” J. Fluid Mech. 406, 81 (2000) .

    Article  MATH  Google Scholar 

  12. L. P. Wang, S. Chen, J. Brasseur and J. C. Wyngaard, “Examination of fundamental hypotheses in the Kolmogorov refined turbulence theory through high-resolution simulations, Part I. Velocity field,” J. Fluid Mech. 309, 113 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  13. T. Gotoh and D. Fukayama, “Pressure spectrum in homogeneous turbulence,” Phys. Rev. Lett. 86, 3775 (2001).

    Article  Google Scholar 

  14. T. Gotoh, D. Fukayama, and T. Nakano, “Velocity field statistics in homogeneous steady turbulence obtained using a high resolution DNS,” Phys. Fluids, to appear, (2002) .

    Google Scholar 

  15. K. R. Sreenivasan, “On the universality of the Kolmogorov constant,” Phys. Fluids 7, 2778 (1995) .

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Arimitsu and N. Arimitsu, “Analysis of turbulence by statistics based on generalized entropies,” Physica A 295, 177 (2001) .

    Article  MathSciNet  MATH  Google Scholar 

  17. A. S. Gurvich and A. M. Yaglom, “Breakdown of eddies and probability distributions for small-scale turbulence,” Phys. Fluids Suppl. 10, S59 (1967).

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Japan

About this paper

Cite this paper

Kajita, Ki., Gotoh, T. (2003). Statistics of the Energy Dissipation Rate in Turbulence. In: Kaneda, Y., Gotoh, T. (eds) Statistical Theories and Computational Approaches to Turbulence. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67002-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67002-5_18

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67004-9

  • Online ISBN: 978-4-431-67002-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics