LES of Stably Stratified Turbulence

  • Kyo Yoshida
  • Takashi Ishihara
  • Yukio Kaneda
Conference paper


Large-eddy simulations (LES) of forced uniformly stably stratified turbu-lence with grid points up to 5123 were performed with the degrees of stratification such that both nonlinear turbulent interactions and internal gravity wave motions play es-sential roles. The degrees of stratification correspond to those of the ocean turbulence at length scale O(10)[m]. It is assumed that at the subgrid scales, the flow is nearly isotropic and that the density fluctuation is approximated by a passive scalar. The LES model equations are derived by using the Lagrangian renormalized approximation which is free from any ad hoc parameter. Energy density of the simulated flow in the wavevector space is strongly anisotropic. The vertical shear spectrum is in qualitative agreement with the measurements in the ocean by Gargett et al.. However, the slope of the spectrum in the simulation (α k-1/3) is shallower than that by the measurement (α k-1).


Large Eddy Simulation Eddy Viscosity Eddy Diffusivity Wavenumber Range Quasi Stationary State 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.E. Gargett, P.J. Hendricks, T.B. Sanford, T.R. Osborn, and A.J. Williams III: J. Phys. Oceanogr. 11, 1258 (1981)CrossRefGoogle Scholar
  2. 2.
    W. Munk. ‘Internal wave and small-scale processes’. In: Evolution of Physical Oceanography, Scientific Surveys in Honour of Henry Stommel, ed. by B. A. Warren and C. Wunsch (MIT Press, 1981) pp. 264–291Google Scholar
  3. 3.
    K. Yoshida, T. Ishihara, D. Fujita, T. Yamahira, and Y. Kaneda: ‘LES modelings based on the Lagrangian renormalized approximation’, present volumeGoogle Scholar
  4. 4.
    J. R. Herring and O. Métals: J. Fluid Mech. 202, 97 (1989)CrossRefGoogle Scholar
  5. 5.
    O. Metals and J. R. Herring: J. Fluid Mech. 202, 117 (1989)CrossRefGoogle Scholar
  6. 6.
    O. Métals and M. Lesieur: J. Fluid Mech. 239, 157 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    D. Ramsden and G. Holloway: J. Geophys. Res. 97, 3659 (1992)CrossRefGoogle Scholar
  8. 8.
    D. A. Siegel and J. A. Domaradzki: J. Phys. Oceanogr. 24, 375 (1994)CrossRefGoogle Scholar
  9. 9.
    T. Hibiya, Y. Niwa, and K. Fujiwara: J. Geophys. Res. 103, 18715 (1998)CrossRefGoogle Scholar
  10. 10.
    G. Carnevale, M. Briscolini, and P. Orlandi: J. Fluid Mech. 247, 205 (2001)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Y. Kaneda: Phys. Fluid 29, 701 (1986)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    M. Lesieur and R. Rogallo: Phys. Fluids A 1, 718 (1989)CrossRefGoogle Scholar
  13. 13.
    J. R. Herring: Phys. Fluids 17, 859 (1974)MATHCrossRefGoogle Scholar
  14. 14.
    C. Cambon: present volumeGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Kyo Yoshida
    • 1
  • Takashi Ishihara
    • 1
  • Yukio Kaneda
    • 1
  1. 1.Graduate School of Engineering, Department of Computational Science and Engineering, Graduate School of EngineeringNagoya UniversityChikusa-ku, NagoyaJapan

Personalised recommendations