LES Modelings based on the Lagrangian Renormalized Approximation

  • Kyo Yoshida
  • Takashi Ishihara
  • Daishi Fujita
  • Tomomichi Yamahira
  • Yukio Kaneda


A systematic way for formulating large-eddy simulation (LES) models based on the Lagrangian renormalized approximation is presented. A spectral LES to simulate the energy spectrum and a probabilistic LES to simulate both the energy spectrum and the error spectrum are formulated for 3-dimensional turbulence and 2-dimensional turbulence with the inverse energy cascading range. The derived models are free from any ad hoc parameters. The models are verified using high resolution nu-merical simulations with 5123 grid points for 3-dimension and 10243 for 2-dimension.


Energy Spectrum Direct Numerical Simulation Eddy Viscosity Subgrid Scale Inertial Subrange 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Kaneda: J. Fluid Mech. 107,131 (1981)CrossRefGoogle Scholar
  2. 2.
    Y. Kaneda: Phys. Fluid 29, 701 (1986)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    J. P. Chollet and M. Lesieur: J. Atmos. Sci. 38, 2747 (1981)CrossRefGoogle Scholar
  4. 4.
    R. H. Kraichnan: J. Atmos. Sci. 33, 1521 (1976)CrossRefGoogle Scholar
  5. 5.
    Y. Yamazaki, T. Ishihara, and Y. Kaneda: J. Phys. Soc. Jpn. 71,777 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    T. Ishihara and Y. Kaneda: present volumeGoogle Scholar
  7. 7.
    C. E. Leith and R. H. Kraichnan: J. Atmos. Sci. 29, 1041 (1972)CrossRefGoogle Scholar
  8. 8.
    J. P. Bertoglio: ‘Stochastic subgrid model for sheared turbulence’. In Macroscopic Modelling of Turbulent Flows, ed. by U. Frisch, J. B. Keller, G. C. Papanicolaou, and O. Pironneau, (Berlin Heidelberg New York Tokyo, 1984. Springer-Verlag) pp. 100–119Google Scholar
  9. 9.
    J. R. Chasnov: Phys. Fluids A 3, 188 (1991)MATHCrossRefGoogle Scholar
  10. 10.
    T. Gotoh, I. Kakui, and Y. Kaneda: present volumeGoogle Scholar
  11. 11.
    Y. Kaneda: Phys. Fluid 30, 2672 (1987) erratum: see the reference in Ishihara and Kaneda, Phys. Fluids, 13, 1431 (2001)MATHCrossRefGoogle Scholar
  12. 12.
    T. Ishihara and Y. Kaneda: Phys. Fluids 13, 2338 (2001)CrossRefGoogle Scholar
  13. 13.
    O. Métais and M. Lesieur: J. Fluid Mech. 239, 157 (1992)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    C. Cambon: present volumeGoogle Scholar
  15. 15.
    T. Ishihara, K. Yoshida, and Y. Kaneda: Phys. Rev. Lett. 88 , 154501 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Kyo Yoshida
    • 1
  • Takashi Ishihara
    • 1
  • Daishi Fujita
    • 1
  • Tomomichi Yamahira
    • 1
  • Yukio Kaneda
    • 1
  1. 1.Graduate School of Engineering, Department of Computational Science and Engineering, Graduate School of EngineeringNagoya UniversityChikusa-ku, NagoyaJapan

Personalised recommendations