LES Study on the Very Large-Scale Structures of Wall-Bounded Turbulence and an Effect of Thermal Stratification

  • Makoto Tsubokura
  • Tetsuro Tamura
Conference paper


The objective of this work is to investigate the very large-scale flow structures observed in or above the logarithmic layer of a wall-bounded turbulence and the effect of thermal stratification on these structures. Large Eddy Simulation (LES) is adopted as a numerical method in this work. We have found that the large-scale structures are similar to the streak-like structures observed in the vicinity of the wall but their size is hundreds times larger than the fine-scale structures. The large structures are also strongly affected by the thermal stratification and suppressed at a certain weakly stable stratification (bulk Ri of about 0.1) tested here, contrarily to the fine-scale streak structures being rather insensitive to the thermal stratification.


Particle Image Velocimetry Large Eddy Simulation Turbulent Boundary Layer Streamwise Velocity Hairpin Vortex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. J. Adrian, C. D. Meinhart and C. D. Tomkins: J. Fluid Mech. 422, 1 (2000)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    D. B. DeGraaff and J. K. Eaton: J. Fluid Mech. 422, 319 (2000)MATHCrossRefGoogle Scholar
  3. 3.
    R. E. Falco: Phys Fluids 20, S124 (1977)CrossRefGoogle Scholar
  4. 4.
    M. Germano, U. Piomelli, P. Moin and W. H. Cabot: Phys. Fluids A3, 1760 (1991)Google Scholar
  5. 5.
    S. Ghosal: J. Comp. Phys 125, 187 (1996)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    J. Jiménes: Ann. Research Briefs, Center for Turbulence Research, 137 (1998)Google Scholar
  7. 7.
    K. C. Kim and R. J. Adrian: Phys Fluids 11, 417 (1999)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    J. Kim, P. Moin and R. Moser: J. Fluid Mech. 177, 133 (1987)MATHCrossRefGoogle Scholar
  9. 9.
    L. S. G. Kovasznay, V. Kibbens and R. F. Blackwelder: J. Fluid Mech. 41, 283 (1970)CrossRefGoogle Scholar
  10. 10.
    D. K. Lilly: Phys. Fluids A4, 633 (1992)Google Scholar
  11. 11.
    C. D. Meinhart and R. J. Adrian: Phys. Fluids 7, 694 (1995)CrossRefGoogle Scholar
  12. 12.
    Y. Morinishi, T. S. Lund, O. V. Vasilyev and P. Moin: J. Comput. Phys. 143, 90 (1998)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    A. E. Perry and M. S. Chong: J. Fluid Mech. 119, 173 (1982)MATHCrossRefGoogle Scholar
  14. 14.
    M. Tsubokura, T. Kobayashi and N. Taniguchi: JSME Int. J. Ser. B 44, 487 (2001)CrossRefGoogle Scholar
  15. 15.
    M. Tsubokura: Phys. Fluids 13, 500 (2001)CrossRefGoogle Scholar
  16. 16.
    A. Yoshizawa, M. Tsubokura, T. Kobayashi and N. Taniguchi: Phys. Fluids 8, 2254 (1996)MATHCrossRefGoogle Scholar
  17. 17.
    J. Zhou, R. J. Adrian, S. Balachandar and T. M. Kendall: J. Fluid Mech. 387, 353 (1999)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Makoto Tsubokura
    • 1
  • Tetsuro Tamura
    • 1
  1. 1.Tokyo Institute of TechnologyNagatsuta, Midoriku, YokohamashiJapan

Personalised recommendations