Advertisement

Computational Challenges for Global Dynamics of Fully Developed Turbulence in the Context of Geophysical Flows

  • Annick Pouquet
  • Duane Rosenberg
  • John Clyne

Abstract

Geophysical turbulent flows posses a very large number of degrees of freedom, and no mechanism is presently known which can reduce this number to a manageable size. In order for numerical simulations to be of use in advancing our understanding of geophysical turbulence, they must complement and make use of experiments, observations and theoretical advances. One is thus compelled to tackle numerical simulations at the highest resolution possible today, using the most powerful computers available with a heavy reliance on advances in information technology. This implies the need for developing as well powerful graphical and analysis softwares that can handle data of the order of 10 Terabytes. Such computations are to be viewed either as gedanken experiments, or as models for turbulence, and potentially the most promising venue is to combine both approaches. This paper reviews a few of the problems associated with these considerations, while stressing the need to maintain close contact with theoretical tools which allow for the construction of subgrid—scale models to be used in Large Eddy Simulations.

Keywords

Direct Numerical Simulation Burger Equation Computational Challenge Subgrid Scale Model Wavelet Basis Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anselmet, F., Gagne, Y., Hopfinger, E.J. & Antonia, R.A., J. Fluid Mech. 140, 63 (1984).CrossRefGoogle Scholar
  2. 2.
    Berger, M.J. & Colella, P. J. Comput. Phys. 82, 64 (1989).MATHCrossRefGoogle Scholar
  3. 3.
    J. P. Bertoglio J.P., in Macroscopic modelling of Turbulent Flows U. Frisch & J.B. Keller Eds. pp.100 Springer (1984).Google Scholar
  4. 4.
    Bodenschatz, E. Nature 409, 1017 (2001).CrossRefGoogle Scholar
  5. 5.
    Burlaga, L.F., Mish, W.H., Roberts, D.A. J. Geophys. Res. 95, 4247 (1990).CrossRefGoogle Scholar
  6. 6.
    Chasnov J. Phys. Fluids A 3 188 (1991).Google Scholar
  7. 7.
    Clyne, J., Scheitlin, T., & Weiss, J. Theoretical and Computational Fluid Dynamics, 11, 195 (1998).MATHCrossRefGoogle Scholar
  8. 8.
    Dietachmayer, G. & K. Droegemeier, Month. Weather Rev, 120, 1675 (1992).CrossRefGoogle Scholar
  9. 9.
    Danilov, S.D. & Gurarie, D. Uspekhi Fiz. Nauk 170 921 (2000).CrossRefGoogle Scholar
  10. 10.
    Falkovich, G., Gawedski, K. $ M. Vergassola, arXiv:cond-mat/0105199 (2001).Google Scholar
  11. 11.
    Farge, M., Schneider, K. & Kevlahan, N. Phys. Fluids 11, 2187 (1999).MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Frisch, U., Turbulence: The Legacy of Kolmogorov, CUP (Cambridge) (1995).MATHGoogle Scholar
  13. 13.
    Frisch, U. & J. Bec, Les Houches Summer School ”New trends in turbulence”, arXiv:nlin.CD/0012033 (2000).Google Scholar
  14. 14.
    Gailitis, A., in Proceedings of NATO ASI ”Theory of Solar and Planetary Dynamos”, p. 91, Eds. D. Matthaeus and A. Rucklidge, CUP (1993).Google Scholar
  15. 15.
    Gombosi, T.I., K.G. Powell and D.L. De Zeeuw, J. Geophys. Res. vol. 99, 21,525 (1994).Google Scholar
  16. 16.
    Gomez, T., H. Politano & A. Pouquet: Phys. Fluids, 11, 2298 (1999).MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Gotoh, T. & R. Kraichnan, Phys. Fluids, 10, 2859 (1998).MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Gotoh T., Kakui I. & Kaneda Y., in Statistical theories and computational approaches to turbulence, Kaneda Y. & Gotoh T. Eds. Springer (2002).Google Scholar
  19. 19.
    Higuchi, H. Jpn. J. Appl. Phys. 17, 811 (1978).CrossRefGoogle Scholar
  20. 20.
    Holm, D. D., Marsden, J. E. & Ratiu, T. S. Adv. in Math. 137, 1 (1998).MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Huang, W., Ren, Y. & Russell, R. J. Comput. Phys. 113, 279 (1994).MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Huang, W. & Russell, R. SIAM J. Numer. Anal. 34, 1106–1126 (1997).MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Ihm, I., and Park, S., in Proceedings of Graphics Interface ”Wavelet-Based 3D Compression Scheme for Very Large Volume Data”, p. 107 (1998).Google Scholar
  24. 24.
    Ishihara T., Yoshida, K. & Kaneda, Y. ”Anisotropic velocity correlation spectrum at small scales in a homogeneous turbulent shear flow”, preprint Nagoya University (2001).Google Scholar
  25. 25.
    Kageyama, A. & Sato, T. Phys. Plasmas 6, 771 (1999).MathSciNetCrossRefGoogle Scholar
  26. 26.
    Kaneda, Y., J. Fluid Mech. 107, 131 (1981).CrossRefGoogle Scholar
  27. 27.
    Kaneda, Y., Ishihara, T. & Gotoh, K., Phys. Fluids 11, 2154 (1999).MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Kaneda, Y. & Ishida, T. J. Fluid Mech. 402, 311 (2000).MATHCrossRefGoogle Scholar
  29. 29.
    Karniadakis G.E., Israeli M. & Orszag S. J. Comput. Phys. 97, 414 (1991).MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Kawahara G., Kida, S., Tanaka, M., Yanase, S. J. Fluid Mech. 353, 115 (1997).MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Kimura, Y. & Herring, J.R. J. Fluid Mech. 328, 523 (1996).CrossRefGoogle Scholar
  32. 32.
    Kolarov, K., and Lynch, W., in SPIE Conference on Applications of Digital Image Processing ”Wavelet Compression for 3D and Higher-Dimensional Objects” p. 247 (1997).Google Scholar
  33. 33.
    Kraichnan R.H., J. Atmos. Sci. 33, 1521 (1976).CrossRefGoogle Scholar
  34. 34.
    Kraichnan R.H., J. Fluid Mech. 83, 349 (1977).MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Kraichnan, R.H. Phys. Rev. Lett. 72, 1016 (1994).CrossRefGoogle Scholar
  36. 36.
    Majda, A.J. & Kramer, P.R. Phys. Reports 314, 237 (1999).MathSciNetCrossRefGoogle Scholar
  37. 37.
    Mallat, S. IEEE Trans. Pattern Anal. Machine Intell. 11 674 (1989).MATHCrossRefGoogle Scholar
  38. 38.
    Margolin, L. & Rider, W., preprint Los Alamos National Laboratory (2002).Google Scholar
  39. 39.
    Mavriplis C. Comput. Meth. Appl. Mech. Engrg. 116, 77 (1994).MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    Métais O. & Lesieur M., J. Fluid Mech. 184 207 (1992).Google Scholar
  41. 41.
    Müller, W.C. & Biskamp, D. Phys. Rev. Lett. 84, 475 (2000).CrossRefGoogle Scholar
  42. 42.
    Muraki, S. IEEE Computer Graphics and Applications, 13, 50 (1993).CrossRefGoogle Scholar
  43. 43.
    Nakayama, K. Astrophys. J. 556, 1027 (2001).CrossRefGoogle Scholar
  44. 44.
    Newell, A.C., Nazarenko, S. & Biven, L. Physica D 152–153, 520 (2001).MathSciNetCrossRefGoogle Scholar
  45. 45.
    Nore, M.E. Brachet, Politano, H. & Pouquet, A. Phys. Plasmas Lett., 4, 1 (1997).CrossRefGoogle Scholar
  46. 46.
    Noullez, A. and Pinton, J.F., preprint Observatoire de la Côte d’Azur (2002).Google Scholar
  47. 47.
    Oran, E. and Boris, J. Computers in Physics 7, 523 (1993).Google Scholar
  48. 48.
    Painter, J., Mccormick, P., and Mcpherson, A. In NSF/DOE Workshop on Large Scale Visualization and Data Management (1999).Google Scholar
  49. 49.
    Parker, S., Parker M, Livnat, Y., Sloan, P., Hansen, C. & Shirley, P. Trans. Viz. Comp. Graph., 5, 238 (1999).CrossRefGoogle Scholar
  50. 50.
    Politano, H., A. Pouquet & V. Carbone Euro Phys. Lett. 43, 516 (1998).CrossRefGoogle Scholar
  51. 51.
    Polyakov, A.M. Phys. Rev. E. 54, 4896 (1996).CrossRefGoogle Scholar
  52. 52.
    Porter, D., Pouquet, A., & Woodward, P., Phys. Fluids 6, 2133 (1994).MATHCrossRefGoogle Scholar
  53. 53.
    Porter, D., Pouquet, A., Sytine, I. & Woodward, P., Physica A, 263, 263 (1999).CrossRefGoogle Scholar
  54. 54.
    Pouquet, A., Les Houches Summer School on Astrophysical Fluid Dynamics; Session XLVII, p. 139; Eds. J. P. Zahn & J. Zinn-Justin, Elsevier (1993).Google Scholar
  55. 55.
    Pumir, A., Phys. Rev. E vol. 57, 2914 (1998).MathSciNetCrossRefGoogle Scholar
  56. 56.
    Rodler, R., in /sl Pacific Graphics ’99 ”Wavelet-based 3D Compression with Fast Random Access for Very Large Volume Data”, p. 108 (1999).Google Scholar
  57. 57.
    Ruzmaikin, A., Feynman, J., Goldstein, B.E., Smith, E.J., Balogh, A. J. Geophys. Res. 100, 3395 (1995).CrossRefGoogle Scholar
  58. 58.
    She, Z.S. & Leveque E. Phys. Rev. Lett. vol. 72, 336 (1994).CrossRefGoogle Scholar
  59. 59.
    Shraiman B. & Siggia E. Nature 405, 639 (2000).CrossRefGoogle Scholar
  60. 60.
    Smolarkiewicz, P. & Margolin, L. J. Comput. Phys. 140, 459 (1998).MathSciNetMATHCrossRefGoogle Scholar
  61. 61.
    Sornette, D., Critical Phenomena in Natural Sciences, Springer (2000).MATHGoogle Scholar
  62. 62.
    Sreenivasan, K.R., Antonia, R.A. Annu. Rev. Fluid Mech. 29, 435 (1997).MathSciNetCrossRefGoogle Scholar
  63. 63.
    Stolorz, P., Nakamura, H., Mesrobian, E., Muntz, R., Shek, C., Santos, J., Yi, J., Ng, K., Chien, S., Mechoso, C, Farrara, J., in Fast Spatial-Temporal Data Mining of Large Geographical Data Sets, AAAI Press, Menlo Park, p. 300 (1995).Google Scholar
  64. 64.
    Sytine, I., Porter, D., Woodward, P., Hodson, S. & Winkler, K-H J. Comput. Phys. 158, 225 (2000).MATHCrossRefGoogle Scholar
  65. 65.
    Sweldens, W. J. Appl Comp. Anal., 3, 186 (1996).MathSciNetMATHCrossRefGoogle Scholar
  66. 66.
    Tao, H., and Moorhead, R., in Proc. Visualization ’94 ”Progressive transmission of scientific data using biorthogonal wavelet transform”, p. 93 (1994).Google Scholar
  67. 67.
    Tu, M. & E. Marsch, Space Sci. Rev. 73, 1 (1995).CrossRefGoogle Scholar
  68. 68.
    Vergassola, M., Dubrulle, B., Frisch, U. & Noullez, A. Astron. Astrophys. 289, 325 (1994).Google Scholar
  69. 69.
    Vergassola, M. Phys. Rev. E 53, R3021 (1996).CrossRefGoogle Scholar
  70. 70.
    Vincent A. & Meneguzzi M., J. Fluid Mech. 258, 245 (1994).MATHCrossRefGoogle Scholar
  71. 71.
    Warhaft Z. Ann. Rev. Fluid Mech. 32, 203 (2000).MathSciNetCrossRefGoogle Scholar
  72. 72.
    Wilson, J., in IEEE Data Compression Conference Poster Session ”Wavelet-Based Lossy Compression of Turbulence Data (2000)Google Scholar
  73. 73.
    Woyczynski, W.A. in ”Nonlinear Waves and Weak Turbulence with applications in oceanography and condensed matter physics” pp. 279–311 (Birkhauser, Berlin) (1995).Google Scholar
  74. 74.
    Yoshida, K. & Kaneda, Y. Phys. Rev. E 63, 1 (2001).CrossRefGoogle Scholar
  75. 75.
    Yoshida K., Ishihara T. & Kaneda Y., in Statistical theories and computational approaches to turbulence. Kaneda Y. & Gotoh T. Eds. Springer (2002).Google Scholar
  76. 76.
    Yoshizawa, A. Phys. Fluids 28, 3313 (1985).MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 2003

Authors and Affiliations

  • Annick Pouquet
    • 1
  • Duane Rosenberg
    • 1
  • John Clyne
    • 1
  1. 1.National Center for Atmospheric ResearchBoulderUSA

Personalised recommendations