Variety of Stock Returns in Normal and Extreme Market Days: The August 1998 Crisis

  • Fabrizio Lillo
  • Giovanni Bonanno
  • Rosario N. Mantegna


We investigate the recently introduced variety of a set of stock returns traded in a financial market. This investigation is done by considering daily and intraday time horizons in a 15-day time period centered at the August 31st, 1998 crash of the S&P500 index. All the stocks traded at the NYSE during that period are considered in the present analysis. We show that the statistical properties of the variety observed in analyses of daily returns also hold for intraday returns. In particular the largest changes of the variety of the return distribution turns out to be most localized at the opening or (to a less degree) at the closing of the market.


Time Horizon Financial Market Stock Return Daily Return Price Return 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, P. W., Arrow, K. J., Pines, D., (eds) (1988) The Economy as an Evolving Complex System. Addison-Wesley, Redwood CityMATHGoogle Scholar
  2. 2.
    Bak, P., Chen, K., Scheinkman, J., Woodford, M. (1993) Aggregate Fluctuations from Independent Sectoral Shocks: Self-Organized Criticality in a Model of Production and Inventory Dynamics. Ricerche Economiche 47, 3–30MATHCrossRefGoogle Scholar
  3. 3.
    Bouchaud, J.-P., Sornette, D. (1994) The Black & Scholes Option Pricing Problem in Mathematical Finance: Generalization and Extensions for a Large Class of Stochastic Processes. J. Phys. I France 4, 863–881MATHCrossRefGoogle Scholar
  4. 4.
    Bouchaud J.-P., Potters, M. (2000) Theory of financial risk. Cambridge University Press, Cambridge, UKGoogle Scholar
  5. 5.
    Bouchaud, J.-P., Lauritsen, K., Alstrom, P., (eds) (2000b) Proceedings of the International Conference on Application of Physics in Financial Analysis. Int. J. Theor. Appl. Finance 3, 309–608Google Scholar
  6. 6.
    Campbell, J. Y., Lo, A. W., MacKinlay, A. C. (1997) The Econometrics of Financial Markets. Princeton University Press, Princeton.MATHGoogle Scholar
  7. 7.
    Cizeau, P., M. Potters, M., Bouchaud, J.-P. (2001) Correlation structure of extreme stock returns. Quantitative Finance 1, 217–222CrossRefGoogle Scholar
  8. 8.
    Elton, E. J., Gruber, M. J. (1995) Modern Portfolio Theory and Investment Analysis. J. Wiley & Sons, New YorkGoogle Scholar
  9. 9.
    Gopikrishnan, P., Meyer, M., Amaral, L. A. N., Stanley, H. E. (1998) Inverse cubic law for the distribution of stock price variations. Eur. Phys. J. B 3 139–140.ADSCrossRefGoogle Scholar
  10. 10.
    Laloux, L., Cizeau, P., Bouchaud, J.-P., Potters, M. (1999) Noise Dressing of Financial Correlation Matrices. Phys. Rev. Lett. 83, 1467–1470ADSCrossRefGoogle Scholar
  11. 11.
    Li, W., (1991) Absence of 1/f Spectra in Dow Jones Daily Average. Int’l J. Bifurcations and Chaos 1, 583–597ADSMATHCrossRefGoogle Scholar
  12. 12.
    Lillo, F., Mantegna, R. N. (2000a) Statistical Properties of Statistical Ensembles of Stock Returns. Int. J. Theor. Appl. Finance 3, 405–408MATHCrossRefGoogle Scholar
  13. 13.
    Lillo, F., Mantegna, R. N. (2000b) Variety and Volatility in Financial Markets. Phys. Rev. E 62 6126–6134ADSCrossRefGoogle Scholar
  14. 14.
    Lillo, F., Mantegna, R. N. (2000c) Symmetry alteration of ensemble return distribution in crash and rally days of financial market. Eur. Phys. J. B 15 603–606.ADSCrossRefGoogle Scholar
  15. 15.
    Lillo, F., Mantegna, R. N. (2001) Empirical properties of the variety of a financial portfolio and the single-index model, Eur. Phys. J. B. in pressGoogle Scholar
  16. 16.
    Lux, T. (1996) The stable Paretian hypothesis and the frequency of large returns: an examination of major German stocks, Applied Financial Economics 6 463–475.ADSCrossRefGoogle Scholar
  17. 17.
    Mantegna, R. N. (1991) Lévy Walks and Enhanced Diffusion in Milan Stock Exchange. Physica A 179, 232–242ADSCrossRefGoogle Scholar
  18. 18.
    Mantegna, R. N., Stanley, H. E. (1995) Scaling Behaviour in the Dynamics of an Economic Index. Nature 376, 46–49ADSCrossRefGoogle Scholar
  19. 19.
    Mantegna, R. N. (1999a) Hierarchical Structure in Financial Markets. Eur. Phys. J. B 11, 193–197ADSCrossRefGoogle Scholar
  20. 20.
    Mantegna, R. N., (ed) (1999b) Proceedings of the International Workshop on Econophysics and Statistical Finance. Physica A 269, 1–188Google Scholar
  21. 21.
    Mantegna, R. N., Stanley, H. E. (2000) An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge University Press, Cambridge, UKGoogle Scholar
  22. 22.
    Müller, U. A., Dacorogna, M. M., Olsen, R. B., Pictet, O. V., Schwarz, M. (1995) Statistical Study of Foreign Exchange Rates, Empirical Evidence of a Price Change Scaling Law and Intraday Analysis. J. Banking and Finance 14 1189–1208.CrossRefGoogle Scholar
  23. 23.
    Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral L. A. N., Stanley, H. E. (1999) Universal and Nonuniversal Properties of Cross Correlations in Financial Time Series. Phys. Rev. Lett. 83, 1471–1474ADSCrossRefGoogle Scholar
  24. 24.
    Takayasu, H., Miura, H., Hirabayashi, T., Hamada, K. (1992) Statistical Properties of Deterministic Threshold Elements — The Case of Market Price. Physica A 184, 127–134ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Fabrizio Lillo
    • 1
  • Giovanni Bonanno
    • 1
  • Rosario N. Mantegna
    • 1
    • 2
  1. 1.Istituto Nazionale per la Fisica della Materia, Facoltà di IngegneriaUnità di PalermoPalermoItalia
  2. 2.Dipartimento di Fisica e Tecnologie RelativeUniversità di PalermoPalermoItalia

Personalised recommendations