Advertisement

Random Matrix Theory and Cross-Correlations of Stock Prices

  • B. Rosenow
  • P. Gopikrishnan
  • V. Plerou
  • H. E. Stanley
Conference paper

Abstract

We use methods of random matrix theory to analyze the cross-correlation matrix C of price changes of the largest 1000 US stocks for the 2-year period 1994–95. We find that the statistics of most of the eigenvalues in the spectrum of C agree with the predictions of random matrix theory, but there are deviations for a few of the largest eigenvalues. The eigenvectors whose eigenvalues deviate from the random matrix bound contain information about business sectors and are stable in time. Finally, we demonstrate that the sectors we identify are useful for the practical goal of finding an investment which earns a given return without exposure to unnecessary risk.

Keywords

Price Change Large Eigenvalue Optimal Portfolio Business Sector Random Matrix Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Campbell, A.W. Lo, and A. MacKinlay (1997) The Econometrics of Financial Markets. Princeton University PressMATHGoogle Scholar
  2. 2.
    E.J. Elton and M.J. Gruber (1995) Modern Portfolio Theory and Investment Analysis. J. Wiley, New YorkGoogle Scholar
  3. 3.
    V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, and H.E. Stanley (1999) Phys. Rev. Lett. 83: 1471ADSCrossRefGoogle Scholar
  4. 4.
    L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters (1999) Phys. Rev. Lett. 83: 1467ADSCrossRefGoogle Scholar
  5. 5.
    S. Drozdz, F. Gruemmer, F. Ruf, and J. Speth (2000) Physica A 287: 440ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Noh (2000) Phys. Rev. E 61: 5981MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    P. Gopikrishnan, B. Rosenow, V. Plerou, and H.E. Stanley (2000) Identifying Business Sectors from Stock Price Fluctuations. eprint cond-mat/0011145Google Scholar
  8. 8.
    E.P. Wigner (1951) Ann. Math. 53: 36MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    T. Guhr, A. Müller-Groeling, and H. A. Weidenmüller (1998) Phys. Rep. 299: 190ADSCrossRefGoogle Scholar
  10. 10.
    F.J. Dyson (1971) Revista Mexicana de Física 20: 231;Google Scholar
  11. 10.
    A.M. Sengupta and P. P. Mitra (1999) Phys. Rev. E 60: 3389ADSCrossRefGoogle Scholar
  12. 11.
    T. Lux (1996) Appl. Fin. Econ. 6: 463;ADSCrossRefGoogle Scholar
  13. 11a.
    V. Plerou, P. Gopikrishnan, L.A.N. Amaral, M. Meyer, and H.E. Stanley (1999) Phys. Rev. E 60: 6519;ADSCrossRefGoogle Scholar
  14. 11b.
    U.A. Müller, M.M. Dacorogna, R.B. Olsen, O.V. Pictet, M. Schwarz, and C. Morgenegg (1990) J. Bank. Fin. 14: 1189CrossRefGoogle Scholar
  15. 12.
    R.N. Mantegna (1999) Eur. Phys. J. B 11: 193; G. Bonnano, F. Lillo, and R.N. Mantegna (2000) e-print cond-mat/0009350ADSGoogle Scholar
  16. 13.
    M. Marsili (2000) Data clustering and noise undressing of correlation matrices. eprint cond-mat/0003241Google Scholar
  17. 14.
    P. C. Hohenberg and B. I. Halperin (1977) Rev. Mod. Phys. 49: 435;ADSCrossRefGoogle Scholar
  18. 14a.
    K. H. Fisher and J. A. Hertz (1991) Spin Glasses. Cambridge University Press, New YorkCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • B. Rosenow
    • 1
    • 2
  • P. Gopikrishnan
    • 2
  • V. Plerou
    • 1
  • H. E. Stanley
    • 2
  1. 1.Institut für Theoretische PhysikUniversität zu KölnKölnGermany
  2. 2.Center for Polymer Studies and Department of PhysicsBoston UniversityBostonUSA

Personalised recommendations