Advertisement

Quantifying Empirical Economic Fluctuations using the Organizing Principles of Scale Invariance and Universality

  • H. Eugene Stanley
  • Luis A. Nunes Amaral
  • Parameswaran Gopikrishnan
  • Vasiliki Plerou
  • Bernd Rosenow
Conference paper

Abstract

This manuscript is a brief summary of a talk that was designed to address the question of whether two of the pillars of the field of phase transitions and critical phenomena—scale invariance and universality—can be useful in guiding research on interpreting empirical data on economic fluctuations. In particular, we shall develop a heuristic argument that serves to make more plausible the scaling and universality hypotheses.

Keywords

Ising Model Scale Invariance Critical Phenomenon Firm Growth Universality Class 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Lux, “The stable Paretian hypothesis and the frequency of large returns: An examination of major German stocks” Applied Financial Economics 6, 463–75 (1996).ADSCrossRefGoogle Scholar
  2. 2.
    P. Gopikrishnan, M. Meyer, L. A. N. Amaral, and H. E. Stanley, “Inverse Cubic Law for the Distribution of Stock Price Variations,” Eur. Phys. J. B 3 (1998) 139–140.ADSCrossRefGoogle Scholar
  3. 3.
    P. Gopikrishnan, V. Plerou, L. A. N. Amaral, M. Meyer, and H. E. Stanley, “Scaling of the Distributions of Fluctuations of Financial Market Indices,” Phys. Rev. E 60, 5305–5316 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    V. Plerou, P. Gopikrishnan, L. A. N. Amaral, M. Meyer, and H. E. Stanley, “Scaling of the distribution of price fluctuations of individual companies” Phys. Rev. E 60, 6519–6529 (1999).ADSCrossRefGoogle Scholar
  5. 5.
    Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.-K. Peng, and H. E. Stanley, “The statistical properties of the volatility of price fluctuations” Phys. Rev. 60, 1390–1400 (1999) .ADSGoogle Scholar
  6. 6.
    B. B. Mandelbrot, “The Variation of Certain Speculative Prices,” J. Business 36 (1963) 394–419.CrossRefGoogle Scholar
  7. 7.
    R. N. Mantegna and H. E. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge University Press, Cambridge 1999; Japanese Translation: Masumi Nakajima (Economist-sha, Tokyo 2000).CrossRefGoogle Scholar
  8. 8.
    H. Takayasu and M. Takayasu, Keizai, Jouhou, Seimei no Rinkai Yuragi (Diamond, Tokyo,2000); English translation Critical fluctuations in economics, information and life (Springer Verlag, Berlin,2001).Google Scholar
  9. 9.
    H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, Oxford, 1971) .Google Scholar
  10. 10.
    A.-L. Barabasi and H. E. Stanley, Fractal Concepts in Surface Growth (Cambridge University Press, Cambridge, 1995).MATHCrossRefGoogle Scholar
  11. 11.
    H. E. Stanley, “Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena,” Rev. Mod. Phys. 71 (1999) S358–5366.CrossRefGoogle Scholar
  12. 12.
    C. K. Peng, S. Buldyrev, A. Goldberger, S. Havlin, F. Sciortino, M. Simons and H. E. Stanley, “Long-Range Correlations in Nucleotide Sequences,” Nature 356 (1992) 168–171.ADSCrossRefGoogle Scholar
  13. 13.
    R. N. Mantegna, S. V. Buldyrev, A. L. Goldberger, S. Havlin, C.-K. Peng, M. Simons, and H. E. Stanley, “Systematic Analysis of Coding and Noncoding DNA Sequences Using Methods of Statistical Linguistics” Phys. Rev. E 52 (1995) 2939–2950.ADSCrossRefGoogle Scholar
  14. 14.
    B. Suki, A.-L. Barabási, Z. Hantos, F. Peták, and H. E. Stanley, “Avalanches and Power Law Behaviour in Lung Inflation,” Nature 368 (1994) 615–618.ADSCrossRefGoogle Scholar
  15. 15.
    C. K. Peng, J. Mietus, J. Hausdorff, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Non-Equilibrium Behavior of the Heartbeat,” Phys. Rev. Lett. 70 (1993) 1343–1346.ADSCrossRefGoogle Scholar
  16. 16.
    P. Ch. Ivanov, M. G. Rosenblum, C.-K. Peng, J. Mietus, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Scaling Behaviour of Heartbeat Intervals obtained by Wavelet-Based Time-Series Analysis,” Nature 383 (1996) 323–327.ADSCrossRefGoogle Scholar
  17. 17.
    L. A. N. Amaral, A. L. Goldberger, P. Ch. Ivanov, and H. E. Stanley, “Scale Independent Measures and Pathologic Cardiac Dynamics” Phys. Rev. Letters 81, 2388–2391 (1998) .ADSCrossRefGoogle Scholar
  18. 18.
    Y. Ashkenazy, P. Ch. Ivanov, S. Havlin, C.-K. Peng, Y. Yamamoto, A. L. Goldberger, and H. E. Stanley, “Decomposition of Heartbeat Time Series: Scaling Analysis of the Sign Sequence,” Computers in Cardiology 27, 139–142 (2000).Google Scholar
  19. 19.
    P. Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger, S. Havlin, M. G. Rosenblum, Z. Struzik, and H. E. Stanley, “Multifractality in Human Heartbeat Dynamics,” Nature 399 (1999) 461–465.ADSCrossRefGoogle Scholar
  20. 20.
    H. Makse, S. Havlin, and H. E. Stanley, “Modeling Urban Growth Patterns,” Nature 377 (1995) 608–612.ADSCrossRefGoogle Scholar
  21. 21.
    H. A. Makse, J. S. Andrade, M. Batty, S. Havlin and H. E. Stanley, “Modeling Urban Growth Patterns with Correlated Percolation” Phys. Rev. E 58 (1998) 7054–7062.ADSCrossRefGoogle Scholar
  22. 22.
    X. Gabaix, “Zipf’s Law for Cities: An Explanation,” Quarterly J. Econ. 114 (1999) 739–767.MATHCrossRefGoogle Scholar
  23. 23.
    G. Malescio, N. V. Dokholyan, S. V. Buldyrev, and H. E. Stanley. “Hierarchical Organization of Cities and Nations” (preprint).Google Scholar
  24. 24.
    M. H. R. Stanley, S. V. Buldyrev, S. Havlin, R. Mantegna, M.A. Salinger, and H. E. Stanley, “Zipf Plots and the Size Distribution of Firms,” Econ. Lett. 49 (1995) 453–457.MATHCrossRefGoogle Scholar
  25. 25.
    J. Sutton, “Gibrat’s Legacy,” J. Econ. Lit. 35 (1997) 40–59.Google Scholar
  26. 26.
    M. H. R. Stanley, L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, and H. E. Stanley, “Scaling Behavior in the Growth of Companies,” Nature 379, 804–806 (1996) .ADSCrossRefGoogle Scholar
  27. 27.
    L. A. N. Amaral, S. V. Buldyrev, S. Havlin, M. A. Salinger, and H. E. Stanley, “Power Law Scaling for a System of Interacting Units with Complex Internal Structure,” Phys. Rev. Lett. 80 (1998) 1385–1388.ADSCrossRefGoogle Scholar
  28. 28.
    Y. Lee, L. A. N. Amaral, D. Canning, M. Meyer, and H. E. Stanley, “Universal Features in the Growth Dynamics of Complex Organizations,” Physical Review Letters 81, 3275–3278 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    V. Plerou, L. A. N. Amaral, P. Gopikrishnan, M. Meyer, and H. E. Stanley, “Similarities between the Growth Dynamics of University Research and of Competitive Economic Activities” Nature 400, 433–437 (1999).ADSCrossRefGoogle Scholar
  30. 30.
    J. Sutton, “The Variance of Firm Growth Rates: The ‘Scaling’ Puzzle,” working paper, London School of Economics (2000).Google Scholar
  31. 31.
    T. Keitt and H. E. Stanley, “Scaling in the Dynamics of North American Breeding-Bird Populations,” Nature 393, 257–259 (1998).ADSCrossRefGoogle Scholar
  32. 32.
    A. Pagan, “The Econometrics of Financial Markets,” J. Empirical Finance 3 (1996) 15–102.CrossRefGoogle Scholar
  33. 33.
    J. Hausman, A. Lo, and A. C. MacKinlay, “An ordered probit analysis of stock transaction prices,” J. Financ. Econom. 31 (1992) 319–379CrossRefGoogle Scholar
  34. 34.
    R. R. Offiicer, “The Distribution of Stock Returns,” J. Amer. Statistical Assoc. 67 (1972) 807–812.CrossRefGoogle Scholar
  35. 35.
    P. D. Praetz, “The Distribution of Share Price Changes,” J. Business 45 (1972) 49–55.CrossRefGoogle Scholar
  36. 36.
    R. C. Blattberg and N. Gonedes, “A Comparison of the Stable Paretian and Student Distributions as Statistical Models for Prices,” J. Business 47 (1974) 244–280.CrossRefGoogle Scholar
  37. 37.
    M. Loretan and P. C. B. Phillips, “Testing the covariance stationarity of heavytailed time series: An overview of applications to several financial data sets,” Journal of Empirical Finance1 (1994) 211–248.CrossRefGoogle Scholar
  38. 38.
    D. Jansen and C. de Vries, “On the Frequency of Large Stock Returns: Putting Booms and Busts into Perspective,” Rev. Econ. Stat. 73 (1991) 18–24.CrossRefGoogle Scholar
  39. 39.
    U. A. Müller, M. M. Dacorogna, and O. V. Pictet, “Heavy Tails in High Frequency Financial Data,” in A Practical Guide to Heavy Tails, edited by R. J. Adler, R. E. Feldman, and M. S. Taqqu (Birkhäuser Publishers, 1998), pp. 83–311.Google Scholar
  40. 40.
    U. A. Müller, M. M. Dacorogna, R. B. Olsen, O. V. Pictet, M. Schwarz, and C. Morgenegg, “Statistical Study of Foreign Exchange Rates, Empirical Evidence of a Price Change Scaling Law and Intraday Analysis,” J. Banking and Finance 14 (1990) 1189–1208.CrossRefGoogle Scholar
  41. 41.
    H. E. Stanley, “Scaling, Universality, and Renormalization: Three Pillars of Modern Critical Phenomena” , Reviews of Modern Physics 71, S358-S366 (1999) [Special Issue for the Centennial of the American Physical Society].CrossRefGoogle Scholar
  42. 42.
    L. A. N. Amaral, S. V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M. A. Salinger, H. E. Stanley, and M. H. R. Stanley, “Scaling Behavior in Economics: I. Empirical Results for Company Growth” J. Phys. I France 7, 621–633 (1997).CrossRefGoogle Scholar
  43. 43.
    H. F. Moed and M. Luwel “The Business of Research” Nature 400, 411–412 (1999).ADSCrossRefGoogle Scholar
  44. 44.
    L. A. N. Amaral, P. Gopikrishnan, K. Matia, V. Plerou, and H. E. Stanley, “Application of Statistical Physics Methods and Concepts to the Study of Science and Technology Systems,” [Proc. 2000 International Conference on Science and Technology Indicators, Leiden] Sociometrics xx, xx (in press).Google Scholar
  45. 45.
    H. Takayasu and K. Okuyama, “Country Dependence on Company Size Distributions and a Numerical Model Based on Competition and Cooperation” Fractals 6, 67–79 (1998).CrossRefGoogle Scholar
  46. 46.
    H. E. Stanley, L. A. N. Amaral, P. Gopikrishnan, P. Ch. Ivanov, T. H. Keitt, and V. Plerou, “Scale Invariance and Universality: Organizing Principles in Complex Systems” [International Conf. on Statistical Physics, Taiwan], Physica A 281, 60–68 (2000).ADSCrossRefGoogle Scholar
  47. 47.
    J. Skjeltorp, “Scaling in Financial Markets” Physica A 283, 486 (2000).ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • H. Eugene Stanley
    • 1
  • Luis A. Nunes Amaral
    • 1
  • Parameswaran Gopikrishnan
    • 1
  • Vasiliki Plerou
    • 1
  • Bernd Rosenow
    • 2
  1. 1.Center for Polymer Studies, and Department of PhysicsBoston UniversityBostonUSA
  2. 2.Institut für Theoretische PhysikUniversität zu KölnKölnGermany

Personalised recommendations