Peripheral Instruments and Techniques for Analytical Electron Microscopy

  • Daisuke Shindo
  • Tetsuo Oikawa


Electron diffraction is fundamentally one of the most important methods for obtaining crystallographic information about materials. The information obtained by electron diffraction is the quantity in reciprocal space, which is the same as that attained by X-ray diffraction and neutron diffraction. Although the intensity of X-ray diffraction and neutron diffraction directly corresponds to the square of an absolute value of the structure factor according to the kinematical diffraction theory, the intensity of electron diffraction should be interpreted on the basis of the dynamical diffraction theory. The dynamical diffraction effect on electron diffraction is explained in the literature [1-3]. In this chapter we discuss the principles and application of nano-beam electron diffraction and convergent beam electron diffraction, which extensively utilize the function of an analytical electron microscope.


Domain Wall Analytical Electron Microscopy Interference Fringe Convergent Beam Electron Diffraction Magnetic Domain Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hirsch PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1965) Electron microscopy of thin crystals. Butterworths, LondonGoogle Scholar
  2. 2.
    Cowley JM (1984) Diffraction physics, 2nd edn. Elsevier Science, AmsterdamGoogle Scholar
  3. 3.
    Shindo D, Hiraga K (1998) High-resolution electron microscopy for materials science. SpringerVerlag, TokyoCrossRefGoogle Scholar
  4. 4.
    Buxton BF, Eades JA, Steeds JW, Rackham GM (1976) The symmetry of electron diffraction zone axis patterns. Philos Trans R Soc Lond 281:171ADSCrossRefGoogle Scholar
  5. 5.
    Tanaka M, Terauchi M (1985) Convergentbeam electron diffraction. JEOL-Maruzen, Tokyo p 192Google Scholar
  6. 6.
    Yonenaga I, Brown PD, Burgess WG, Humphreys CJ (1995) Faulted dipoles in indium-doped GaAs. Inst Phys Conf Ser 146:87Google Scholar
  7. 7.
    Kelly PM, Jostsons A, Blake RG, Napier JG (1975) The determination of foil thickness by scanning transmission electron microscopy. Phys Stat Sol (a) 31:771ADSCrossRefGoogle Scholar
  8. 8.
    Allen SM (1981) Foil thickness measurement from convergent-beam diffraction patterns. Phil Mag A43:325ADSGoogle Scholar
  9. 9.
    Nishino D, Nakafuji A, Yang J-M, Shindo D (1998) Precise morphology analysis on platelet-type hematite particles by transmission electron microscopy. ISIJ Int 38:1369CrossRefGoogle Scholar
  10. 10.
    Cherns D, Preston AR (1986) Convergent beam diffraction studies of crystal defects. Proc 11th Int Cong Electron Microsc Kyoto 1:721Google Scholar
  11. 11.
    Gjønnes J, Høier R (1971) The application of non-systematic many-beam dynamic effects to structure-factor determination. Acta Cryst A27:313Google Scholar
  12. 12.
    Tomokiyo Y, Matsumura S, Eguchi T (1986) Critical voltage and anharmonicity of thermal vibration of atoms in metals of cubic lattices. Proc 11th Int Cong Electron Microsc Kyoto 2:1085Google Scholar
  13. 13.
    Grundy PJ, Tebble RS (1968) Lorentz electron microscopy. Adv Phys 17:153ADSCrossRefGoogle Scholar
  14. 14.
    Néel L (1955) Magnétisme: énergie des parois de Bloch dans les couches minces. C R Acad Sci 241:533Google Scholar
  15. 15.
    Huber EE Jr, Smith DO, Goodenough JB (1958) Domain-wall structure in permalloy films. J Appl Phys 29:294ADSCrossRefGoogle Scholar
  16. 16.
    Tonomura A (1999) Electron holography, 2nd edn Springer, Berlin Heidelberg New York TokyoMATHGoogle Scholar
  17. 17.
    Yang J-M, Shindo D, Lim S-H, Takeguchi M, Oikawa T (1998) Advanced transmission electron microscopy on Sm-Co based permanent magnets. Electron Microsc ICEM 14:559Google Scholar
  18. 18.
    Kittel C (1949) Physical theory of ferromagnetic domains. Rev Mod Phys 21:541ADSCrossRefGoogle Scholar
  19. 19.
    Fuller HW, Hale ME (1960) Determination of magnetization distribution in thin films using electron microscopy. J Appl Phys 31:238ADSCrossRefGoogle Scholar
  20. 20.
    Wade RH (1966) Investigation of the geometricaloptical theory of magnetic structure imaging in the electron microscope. J Appl Phys 37:366ADSCrossRefGoogle Scholar
  21. 21.
    Yang J-M, Shindo D, Hiroyoshi H (1997) Observation of microstructures and magnetic domains of Sm-Co based permanent magnets by high-voltage electron microscopy. Mater Transact JIM 38:363Google Scholar
  22. 22.
    Mishra RK, Thomas G, Yoneyama T, Fukuno A, Ojima T (1981) Microstructure and properties of step aged rare earth alloy magnets. J Appl Phys 52:2517ADSCrossRefGoogle Scholar
  23. 23.
    Chapman JN, Johnston AB, Heyderman LJ, McVitie S, Nicholson WAP, Bormans B (1994) Coherent magnetic imaging by TEM. IEEE Trans Magn 30:4479ADSCrossRefGoogle Scholar
  24. 24.
    McVitie S, Chapman JN, Zhou L, Heyderman LJ, Nicholson WAP (1995) In-situ magnetizing experiments using coherent magnetic imaging in TEM. J Magn Magn Mater 148:232ADSCrossRefGoogle Scholar
  25. 25.
    Chapman JN, Batson PE, Waddell EM, Ferrier RP (1978) The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3:203CrossRefGoogle Scholar
  26. 26.
    Tsuno K, Inoue M (1984) Double gap objective lens for observing magnetic domains by means of differential phase contrast electron microscopy. Optik 67:363Google Scholar
  27. 27.
    Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115:485MathSciNetADSMATHCrossRefGoogle Scholar
  28. 28.
    Shindo D, Park Y G (2003, in press) Lorentz microscopy and holography characterization of magnetic materials. In: Characterization and simulation of advanced magnetic materials. Springer, Berlin Heidelberg New York TokyoGoogle Scholar
  29. 29.
    Lee C-W, Ikematsu Y, Shindo D (2000) Thickness measurement of amorphous Si02 by EELS and electron holography. Mater Transact JIM 41:1129Google Scholar
  30. 30.
    Shindo D, Murakami Y, Hirayama T (1998) Application of electron hologram to morphological analysis of spindle-type hematite particles. Mater Transact JIM 39:322Google Scholar
  31. 31.
    Shindo D, Park Y- G, Yoshizawa Y (2002) Magnetic domain structures of Fe73.5Cu,Nd3Sii3.5B9 films studied by electron holography. J Magn Magn Mater 238:101ADSCrossRefGoogle Scholar
  32. 32.
    Pennycook SJ, Berger SD, Culbertson RJ (1986) Elemental mapping with elastically scattered electrons. J Microsc 144:229CrossRefGoogle Scholar
  33. 33.
    Kawasaki M, Yamazaki T, Sato S, Watanabe K, Shiojiri M (2001) Atomic-scale quantitative elemental analysis of boundary layers in a SrTiO3 ceramic condenser by high-angle annular dark-field electron microscopy. Phil Mag A 81:245ADSCrossRefGoogle Scholar
  34. 34.
    Shindo D, Lee B-T, Waseda Y, Muramatsu A, Sugimoto T (1993) Crystallography of platelet-type hematite particles by electron microscopy. Mater Transact JIM 34:580ADSGoogle Scholar
  35. 35.
    Ikematsu Y, Mizutani T, Nakai K, Fujinami M, Hasebe M, Ohashi W (1998) Transmission electron microscope observation of grown-in defects detected by bright-field infrared-laser interferometer in Czochralshi silicon crystals. Jpn J Appl Phys 37:L196ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Daisuke Shindo
    • 1
  • Tetsuo Oikawa
    • 2
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendai, MiyagiJapan
  2. 2.Application and Research CenterJEOL Ltd.Akishima, TokyoJapan

Personalised recommendations