Skip to main content

Peripheral Instruments and Techniques for Analytical Electron Microscopy

  • Chapter
Analytical Electron Microscopy for Materials Science

Abstract

Electron diffraction is fundamentally one of the most important methods for obtaining crystallographic information about materials. The information obtained by electron diffraction is the quantity in reciprocal space, which is the same as that attained by X-ray diffraction and neutron diffraction. Although the intensity of X-ray diffraction and neutron diffraction directly corresponds to the square of an absolute value of the structure factor according to the kinematical diffraction theory, the intensity of electron diffraction should be interpreted on the basis of the dynamical diffraction theory. The dynamical diffraction effect on electron diffraction is explained in the literature [1-3]. In this chapter we discuss the principles and application of nano-beam electron diffraction and convergent beam electron diffraction, which extensively utilize the function of an analytical electron microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirsch PB, Howie A, Nicholson RB, Pashley DW, Whelan MJ (1965) Electron microscopy of thin crystals. Butterworths, London

    Google Scholar 

  2. Cowley JM (1984) Diffraction physics, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  3. Shindo D, Hiraga K (1998) High-resolution electron microscopy for materials science. SpringerVerlag, Tokyo

    Book  Google Scholar 

  4. Buxton BF, Eades JA, Steeds JW, Rackham GM (1976) The symmetry of electron diffraction zone axis patterns. Philos Trans R Soc Lond 281:171

    Article  ADS  Google Scholar 

  5. Tanaka M, Terauchi M (1985) Convergentbeam electron diffraction. JEOL-Maruzen, Tokyo p 192

    Google Scholar 

  6. Yonenaga I, Brown PD, Burgess WG, Humphreys CJ (1995) Faulted dipoles in indium-doped GaAs. Inst Phys Conf Ser 146:87

    Google Scholar 

  7. Kelly PM, Jostsons A, Blake RG, Napier JG (1975) The determination of foil thickness by scanning transmission electron microscopy. Phys Stat Sol (a) 31:771

    Article  ADS  Google Scholar 

  8. Allen SM (1981) Foil thickness measurement from convergent-beam diffraction patterns. Phil Mag A43:325

    ADS  Google Scholar 

  9. Nishino D, Nakafuji A, Yang J-M, Shindo D (1998) Precise morphology analysis on platelet-type hematite particles by transmission electron microscopy. ISIJ Int 38:1369

    Article  Google Scholar 

  10. Cherns D, Preston AR (1986) Convergent beam diffraction studies of crystal defects. Proc 11th Int Cong Electron Microsc Kyoto 1:721

    Google Scholar 

  11. Gjønnes J, Høier R (1971) The application of non-systematic many-beam dynamic effects to structure-factor determination. Acta Cryst A27:313

    Google Scholar 

  12. Tomokiyo Y, Matsumura S, Eguchi T (1986) Critical voltage and anharmonicity of thermal vibration of atoms in metals of cubic lattices. Proc 11th Int Cong Electron Microsc Kyoto 2:1085

    Google Scholar 

  13. Grundy PJ, Tebble RS (1968) Lorentz electron microscopy. Adv Phys 17:153

    Article  ADS  Google Scholar 

  14. Néel L (1955) Magnétisme: énergie des parois de Bloch dans les couches minces. C R Acad Sci 241:533

    Google Scholar 

  15. Huber EE Jr, Smith DO, Goodenough JB (1958) Domain-wall structure in permalloy films. J Appl Phys 29:294

    Article  ADS  Google Scholar 

  16. Tonomura A (1999) Electron holography, 2nd edn Springer, Berlin Heidelberg New York Tokyo

    MATH  Google Scholar 

  17. Yang J-M, Shindo D, Lim S-H, Takeguchi M, Oikawa T (1998) Advanced transmission electron microscopy on Sm-Co based permanent magnets. Electron Microsc ICEM 14:559

    Google Scholar 

  18. Kittel C (1949) Physical theory of ferromagnetic domains. Rev Mod Phys 21:541

    Article  ADS  Google Scholar 

  19. Fuller HW, Hale ME (1960) Determination of magnetization distribution in thin films using electron microscopy. J Appl Phys 31:238

    Article  ADS  Google Scholar 

  20. Wade RH (1966) Investigation of the geometricaloptical theory of magnetic structure imaging in the electron microscope. J Appl Phys 37:366

    Article  ADS  Google Scholar 

  21. Yang J-M, Shindo D, Hiroyoshi H (1997) Observation of microstructures and magnetic domains of Sm-Co based permanent magnets by high-voltage electron microscopy. Mater Transact JIM 38:363

    Google Scholar 

  22. Mishra RK, Thomas G, Yoneyama T, Fukuno A, Ojima T (1981) Microstructure and properties of step aged rare earth alloy magnets. J Appl Phys 52:2517

    Article  ADS  Google Scholar 

  23. Chapman JN, Johnston AB, Heyderman LJ, McVitie S, Nicholson WAP, Bormans B (1994) Coherent magnetic imaging by TEM. IEEE Trans Magn 30:4479

    Article  ADS  Google Scholar 

  24. McVitie S, Chapman JN, Zhou L, Heyderman LJ, Nicholson WAP (1995) In-situ magnetizing experiments using coherent magnetic imaging in TEM. J Magn Magn Mater 148:232

    Article  ADS  Google Scholar 

  25. Chapman JN, Batson PE, Waddell EM, Ferrier RP (1978) The direct determination of magnetic domain wall profiles by differential phase contrast electron microscopy. Ultramicroscopy 3:203

    Article  Google Scholar 

  26. Tsuno K, Inoue M (1984) Double gap objective lens for observing magnetic domains by means of differential phase contrast electron microscopy. Optik 67:363

    Google Scholar 

  27. Aharonov Y, Bohm D (1959) Significance of electromagnetic potentials in the quantum theory. Phys Rev 115:485

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Shindo D, Park Y G (2003, in press) Lorentz microscopy and holography characterization of magnetic materials. In: Characterization and simulation of advanced magnetic materials. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  29. Lee C-W, Ikematsu Y, Shindo D (2000) Thickness measurement of amorphous Si02 by EELS and electron holography. Mater Transact JIM 41:1129

    Google Scholar 

  30. Shindo D, Murakami Y, Hirayama T (1998) Application of electron hologram to morphological analysis of spindle-type hematite particles. Mater Transact JIM 39:322

    Google Scholar 

  31. Shindo D, Park Y- G, Yoshizawa Y (2002) Magnetic domain structures of Fe73.5Cu,Nd3Sii3.5B9 films studied by electron holography. J Magn Magn Mater 238:101

    Article  ADS  Google Scholar 

  32. Pennycook SJ, Berger SD, Culbertson RJ (1986) Elemental mapping with elastically scattered electrons. J Microsc 144:229

    Article  Google Scholar 

  33. Kawasaki M, Yamazaki T, Sato S, Watanabe K, Shiojiri M (2001) Atomic-scale quantitative elemental analysis of boundary layers in a SrTiO3 ceramic condenser by high-angle annular dark-field electron microscopy. Phil Mag A 81:245

    Article  ADS  Google Scholar 

  34. Shindo D, Lee B-T, Waseda Y, Muramatsu A, Sugimoto T (1993) Crystallography of platelet-type hematite particles by electron microscopy. Mater Transact JIM 34:580

    ADS  Google Scholar 

  35. Ikematsu Y, Mizutani T, Nakai K, Fujinami M, Hasebe M, Ohashi W (1998) Transmission electron microscope observation of grown-in defects detected by bright-field infrared-laser interferometer in Czochralshi silicon crystals. Jpn J Appl Phys 37:L196

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Japan

About this chapter

Cite this chapter

Shindo, D., Oikawa, T. (2002). Peripheral Instruments and Techniques for Analytical Electron Microscopy. In: Analytical Electron Microscopy for Materials Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66988-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66988-3_5

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70336-5

  • Online ISBN: 978-4-431-66988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics