Energy Dispersive X-ray Spectroscopy

  • Daisuke Shindo
  • Tetsuo Oikawa


A typical analytical electron microscopic method (i.e., energy dispersive X-ray spectroscopy, or EDS, sometimes called EDX or EDXS) is described in this chapter. Although some improvement in the resolution of EDS has been attempted, there has been no significant modification introduced in the practice and application of EDS in comparison with electron energyloss spectroscopy (EELS). Still, this method is the most standard and reliable one in the field of analytical electron microscopy and is widely used.


Orbital Angular Momentum Incident Electron Site Occupancy Atomic Plane Principal Quantum Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nomenclature, symbols, units and their usage in spectrochemical analysis-VIII. Nomenclature system for X-ray spectroscopy. Recommendations (1991)Google Scholar
  2. 2.
    Jenkins R, Manne R, Robin J, Senemaud C (1991) Part VIII. Nomenclature system for X-ray spectroscopy. Pure Appl Chem 63:735CrossRefGoogle Scholar
  3. 3.
    Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Newbury DE, Martinis JM (1997) High-resolution, energy-dispersive microcalorimeter spectrometer for X-ray microanalysis. J Microsc 188:196CrossRefGoogle Scholar
  4. 4.
    Wollman DA, Irwin KD, Hilton GC, Dulcie LL, Bergren NF, Newbury DE, Martinis JM (1998) Microcalorimeter EDS with 3 eV energy resolution. In: Proceedings of the 14th international conference on electron microscopy, vol 3, p 573Google Scholar
  5. 5.
    Zaluzec NJ (1979) Quantitative X-ray microanalysis. In: Introduction to analytical electron microscopy. Hen JJ, Goldstein JI, Joy DC. (Plenum, New York, p 121)CrossRefGoogle Scholar
  6. 6.
    Yang J-M, Shindo D, Takeguchi M, Kawasaki M, Oikawa T (1999) Characterization of microstructure and magnetic domain structure in Sm-Co based permanent magnets by advanced transmission electron microscopy. J Jpn Inst Metals 63:542 (In Japanese)Google Scholar
  7. 7.
    Ziebold TO (1967) Precision and sensitivity in microprobe analysis. Anal Chem 39:858CrossRefGoogle Scholar
  8. 8.
    Watanabe M, Williams DB (1999) Atomic-level detection by X-ray microanalysis in the analytical electron microscope. Ultramicroscopy 78:89CrossRefGoogle Scholar
  9. 9.
    Kawasaki M, Oikawa T, Ibe K, Park K-H, Shiojiri M (1998) EDS elemental mapping of a DRAM with an FE-TEM. J Electron Microsc 47:335CrossRefGoogle Scholar
  10. 10.
    Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203CrossRefGoogle Scholar
  11. 11.
    Schreiber TP, Wims AM (1981) A quantitative Xray microanalysis thin film method using K-, L-, and M-lines. Ultramicroscopy 6:323Google Scholar
  12. 12.
    Goldstein JI, Williams DB, Cliff G (1986) Quantitative X-ray analysis. In: Joy DC, Romig AD Jr, Goldstein JI (eds) Principles of analytical electron microscopy. (Plenum, New York, p 155)Google Scholar
  13. 13.
    Mott NF, Massey HSW (1949) The theory of atomic collisions, 2nd edn. Oxford University Press, London, p 243MATHGoogle Scholar
  14. 14.
    Green M, Cosslett VE (1961) The efficiency of production of characteristic X-radiation in thick targets of a pure element. Proc Phys Soc 78:1206ADSCrossRefGoogle Scholar
  15. 15.
    Horita Z (1998) Quantitative X-ray microanalysis in analytical electron microscopy. Mater Trans JIM 39:947Google Scholar
  16. 16.
    Überall H (1956) High-energy interference effect of bremsstrahlung and pair production in crystals. Phys Rev 103:1055ADSCrossRefGoogle Scholar
  17. 17.
    Barbiellini G, Bologna G, Diambrini G, Murtas GP (1962) Experimental evidence for a quasi-monochromatic bremsstrahlung intensity from the Frascati 1-GeV electronsynchrotron. Phys Rev Lett 8:454ADSCrossRefGoogle Scholar
  18. 18.
    Spence JCH, Reese G, Yamamoto N, Kurizki G (1983) Coherent bremsstrahlung peaks in X-ray microanalysis spectra. Phil Mag B48:L39CrossRefGoogle Scholar
  19. 19.
    Reese GM, Spence JCH, Yamamoto N (1984) Coherent bremsstrahlung from kilovolt electrons in zone axis orientations. Phil Mag A49:697ADSGoogle Scholar
  20. 20.
    Spence JCH, Reese G (1986) Pendellösung radiation and coherent bremsstrahlung. Acta Cryst A42: 577Google Scholar
  21. 21.
    Satoh T, Otsuki E, Shindo D (1998) Coherent bremsstrahlung in ferrite observed by an analytical transmission electron microscope. J Electron Microsc 47:345CrossRefGoogle Scholar
  22. 22.
    Shindo D, Hiraga K, Williams T, Hirabayashi M, Inoue A, Masumoto T (1989) Electron channelling effect in an Al-Fe-Cu quasicrystal. Jpn J Appl Phys 28:L688ADSCrossRefGoogle Scholar
  23. 23.
    Cowley JM (1964) The derivation of structural information from absorption effects in X-ray diffraction. Acta Cryst 17:33CrossRefGoogle Scholar
  24. 24.
    Batterman BW (1969) Detection of foreign atom sites by their X-ray fluorescence scattering. Phys Rev Lett 22:703ADSCrossRefGoogle Scholar
  25. 25.
    Spence JCH, Taftø J (1983) ALCHEMI: a new technique for locating atoms in small crystals. J Microsc 130:147CrossRefGoogle Scholar
  26. 26.
    Shindo D, Hirabayashi M, Kawabata T, Kikuchi M (1986) A channelling enhanced microanalysis on niobium atom location in an Al-43 %Ti-2 %Nb intermetallic compound. J Electron Microsc 35:409Google Scholar
  27. 27.
    Shindo D, Chiba A, Hiraga K, Hanada S (1991) Electron channelling enhanced microanalysis of intermetallic compounds. In: Izumi O (ed) Proceedings of the International Symposium on Intermetallic Compounds, p 87Google Scholar
  28. 28.
    Horita Z, Matsumura S, Baba T (1995) General formulation for ALCHEMI. Ultramicroscopy 58:327CrossRefGoogle Scholar
  29. 29.
    Rossouw CJ, Forwood CT, Gibson MA, Miller PR (1996) Statistical ALCHEMI: general formulation and method with application to Ti-Al ternary alloys. Phil Mag A74:57ADSGoogle Scholar
  30. 30.
    Shindo D, Kikuchi M, Hirabayashi M, Hanada S, Izumi O (1988) Site determination of Fe, Co and Cr atoms added in Ni3AI by electron channelling enhanced microanalysis. Trans Jpn Inst Metall 29:956Google Scholar
  31. 31.
    Chiba A, Shindo D, Hanada S (1991) Site occupation determination of Pd in Ni3Al by ALCHEMI. Acta Metall Mater 39:13CrossRefGoogle Scholar
  32. 32.
    Nakata Y, Tadaki T, Shimizu K (1991) Atom location of the third element in Ti-Ni-X shape memory alloys determined by the electron channelling enhanced microanalysis. Mater Trans JIM 32:580Google Scholar
  33. 33.
    Spence JCH, Graham RJ, Shindo D (1986) Cold ALCHEMI: impurity atom site location and the temperature dependance of dechannelling. Mater Res Soc Symp Proc 62:153CrossRefGoogle Scholar
  34. 34.
    Okaniwa H, Shindo D, Yoshida M, Takasugi T (1999) Determination of site occupancy of additives X (X = V, Mo, W and Ti) in the Nb-Cr-X Laves phase by ALCHEMI. Acta Mater 47:1987CrossRefGoogle Scholar
  35. 35.
    Gjønnes J, Høier R (1971) The application of nonsystematic many-beam dynamical effects to structure factor determination. Acta Cryst A27:313Google Scholar
  36. 36.
    Matsumura S, Morimura T, Oki K (1991) An analytical electron diffraction technique for the determination of long-range order parameters in multi-component ordered alloys. Mater Trans JIM 32:905Google Scholar
  37. 37.
    Bentley J (1986) Axial electron channeling microanalysis of Ll2 ordered alloys. In: Proceedings of the 11th International Congress on Electron Microscopy, Kyoto, vol 1, p 551Google Scholar
  38. 38.
    Pennycook SJ (1985) Electron channeling analysis and Z-contrast imaging of dopants in semiconductors. In: Bailey GW (ed) Proceedings of the 43rd annual EMSA meeting. San Francisco Press, San Francisco, p 296Google Scholar
  39. 39.
    Pennycook SJ (1988) Delocalization corrections for electron channeling analysis. Ultramicroscopy 26:239CrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Daisuke Shindo
    • 1
  • Tetsuo Oikawa
    • 2
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendai, MiyagiJapan
  2. 2.Application and Research CenterJEOL Ltd.Akishima, TokyoJapan

Personalised recommendations