Electron Energy-Loss Spectroscopy

  • Daisuke Shindo
  • Tetsuo Oikawa


Electron energy-loss spectroscopy (EELS) is one of the most popular analytical electron microscopy techniques, similar to energy dispersive X-ray spectroscopy (EDS). In the past, EELS was thought to be effective in compositional analysis only for light elements but useless in general for quantitative analysis in comparison with EDS. However, the accuracy of analysis by EELS is much improved recently owing to high performance of the detector and usage of a FEG. Furthermore, an energy-filter system that provides energy-filtered images has been installed on an electron microscope. Thus, currently EELS has attracted much attention for new applications such as elemental mapping and background subtraction in electron diffraction patterns.


Electron Energy Loss Spectroscopy Plasmon Excitation Acceptance Angle Energy Filter Thermal Diffuse Scattering 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shuman H (1981) Parallel recording of electron energy loss spectra. Ultramicroscopy 6:163Google Scholar
  2. 2.
    Krivanek OL, Ahn CC, Keeney RB (1987) Parallel detection electron spectrometer using quadrupole lenses. Ultramicroscopy 22:103CrossRefGoogle Scholar
  3. 3.
    Terauchi M, Kuzuo R, Satoh F, Tanaka M, Tsuno K, Ohyama J (1991) Performance of a new highresolution electron energy-loss spectroscopy microscope. Microsc Microanal Microstruct 2:351CrossRefGoogle Scholar
  4. 4.
    Lee C-W, Ikematsu Y, Shindo D (2002) Measurement of mean free paths for inelastic electron scattering of Si and Si02. J Electron Microsc, p 143Google Scholar
  5. 5.
    Oikawa T, Bando Y, Hosoi J, Kokubo Y (1985) Advantages of a HVEM in electron energy loss spectroscopy: in situ experiments with high voltage electron microscopes. In: Proceeding of the international symposium on “behavior of lattice imperfections in materials-in situ experiments with HVEM”, Osaka, 409Google Scholar
  6. 6.
    Egerton RF (1978) Quantitative energy-loss spectroscopy. In: Johari O (ed) Scanning electron microscopy. SEM, Chicago, 1, p 133Google Scholar
  7. 7.
    Isaacson MS, Silcox J (1976) Report of a workshop on analytical electron microscopy held at Cornell University. Ultramicroscopy 2:89CrossRefGoogle Scholar
  8. 8.
    Suenaga K, Ténce M, Mory C, Colliex C, Kato H, Okazaki T, Shinohara H, Hirahara K, Bandow S, Iijima S (2000) Element-selective single atom imaging. Science 290:2280ADSCrossRefGoogle Scholar
  9. 9.
    Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum, New YorkCrossRefGoogle Scholar
  10. 10.
    Raether H (1980) Excitation of plasmons and interband transitions by electrons. In: Springer tracts in modern physics, vol 88 Springer, Berlin Heidelberg New YorkGoogle Scholar
  11. 11.
    Auerhammer JM, Rez P (1989) Dipole-fobidden excitations in electron-energy-loss spectroscopy. Phys Rev B40:2024ADSGoogle Scholar
  12. 12.
    Jones W, Sparrow TG, Williams BG, Herley PJ (1984) Evidence for the formation of single crystals of sodium metal during the decomposition of sodium aluminum hydride: an electron microscopic study. Mater Lett 2:377CrossRefGoogle Scholar
  13. 13.
    Kunz C (1966) Messung Charakteristischer Energieverluste von Elektronen an leichtoxydierbaren Metallen im Ultrahochvakuum. Z Phys 196:311ADSCrossRefGoogle Scholar
  14. 14.
    Kloos T (1973) Plasmaschwingungen in Al, Mg, Li, Na and K angeregt durch schnelle Elektronen. Z Phys 265:225 15.Google Scholar
  15. 15.
    Daniels J, Festenberg CV, Raether H, Zeppenfeld K (1970) Optical constants of solids by electron spectroscopy. In: Springer tracts in modern physics, vol 54 Springer, Berlin Heidelberg New York, p 78Google Scholar
  16. 16.
    Zeppenfeld K, Raether H (1966) Energieverluste von 50 keV-Elektronen an Ge und Si. Z Phys 193:471ADSCrossRefGoogle Scholar
  17. 17.
    Sueoka O (1965) Plasma oscillation of electrons in Be, Mg, Al, Si, Ge, Sn, Sb and Bi. J Phys Soc Jpn 20:2203ADSCrossRefGoogle Scholar
  18. 18.
    Aiyama T, Yada K (1974) Plasmon damping in Be, Mg, Al, Si, Ge and Sn. J Phys Soc Jpn 36:1554ADSCrossRefGoogle Scholar
  19. 19.
    Oikawa T, Hosoi J, Inoue M, Harada Y (1982) Applications of electron energy analyzer. JEOL News 20E:8Google Scholar
  20. 20.
    Nishino D, Nakafuji A, Yang J-M, Shindo D (1998) Precise morphology analysis on platelet-type hematite particles by transmission electron microscopy. ISIJ Int 38:1369CrossRefGoogle Scholar
  21. 21.
    Egerton RF (1980) Instrumentation and software for energy-loss microanalysis. In: Johari O (ed) Scanning electron microscopy. SEM, Chicago, 1, p 41Google Scholar
  22. 22.
    Lee Y- S, Murakami Y, Shindo D, Oikawa T (2000) Effect of scattering angle on energy loss near-edge structure of h-BN. Mater Trans JIM 41:555Google Scholar
  23. 23.
    Ichinose H, Zhang Y, Ishida Y, Ito K, Nakanose M (1996) Morphology, atomic structure and electron structure of artificial diamond grain boundary. JEOL News 32E:16Google Scholar
  24. 24.
    Hosoi J, Oikawa T, Kokubo Y (1985) Computed deconvolution in electron energy loss spectroscopy (EELS). J Electron Microsc 34:73Google Scholar
  25. 25.
    Shindo D, Ohishi K, Hiraga K, Syono Y, Hojou K, Furuno S (1991) Oxygen K-edge fine structure of La2-xMxCuO4, (M = Sr, Ba and Ca) studied by electron energy loss spectroscopy. Mater Trans JIM 32:872Google Scholar
  26. 26.
    Murakami Y, Shindo D, Chiba H, Kikuchi M, Syono Y (1999) Charge ordering in Bi1-xCaxMnO3 (x > 0.75) studied by electron-energy-loss spectroscopy. Phys Rev B59:6395ADSGoogle Scholar
  27. 27.
    Pearson DH, Fultz B, Ahn CC (1988) Measurements of 3d state occupancy in transition metals using electron energy loss spectrometry. Appl Phys Lett 53:1405ADSCrossRefGoogle Scholar
  28. 28.
    Murakami Y, Shindo D, Otsuka K, Oikawa T (1998) Electronic structure changes associated with a martensitic transformation in Ti50Ni48Fe2 alloy studied by electron energy-loss spectroscopy. J Electron Microsc 47:301CrossRefGoogle Scholar
  29. 29.
    Shindo D, Hiraga K, Tsai A-P, Chiba A (1993) Cu L2,3 white lines of Cu compounds studied by electron energy loss spectroscopy. J Electron Microsc 42:48Google Scholar
  30. 30.
    Zanchi G, Perez JP, Sevely J (1975) Adaptation of a magnetic filtering device on a one megavolt electron microscope. Optik 43:495.Google Scholar
  31. 31.
    Castaing R, Hennequin JF, Henry L, Slodgian G (1967) The magnetic prism as an optical system. In: Septier A (ed) Focusing of charged particle, Academic Press, New York, p 265Google Scholar
  32. 32.
    Krivanek OL, Gubbens AJ, Dellby N (1991) Developments in EELS instrumentation for spectroscopy and imaging. Microsc Microanal Microstrct 2:315CrossRefGoogle Scholar
  33. 33.
    Hashimoto H, Makita Y, Nagaoka N (1992) Atomic structure images formed by core loss electrons. In: Bailey GW, Bentley J, Small JA (eds) Proceedings of the 50th Annual EMSA Meeting, Boston, p 1194Google Scholar
  34. 34.
    Ajika N, Hashimoto H, Endo H, Yamaguchi K, Tomita M, Egerton RF (1983) Construction of analyzer for energy-filtered lattice image. In: Proceedings of the Japanese Society of Electron Microscopy, annual meeting, p 134 (in Japanese)Google Scholar
  35. 35.
    Taya S, Taniguchi Y, Nakazawa E, Usukura J (1996) Development of γ--type energy filtering TEM. J Electron Microsc 45:307CrossRefGoogle Scholar
  36. 36.
    Oikawa T, Sasaki H, Matsuo T, Kokubo Y (1982) Elemental filtergrams obtained by means of electron energy analyzer combined with image storage system. In: Bailey GW (ed) Proceedings of the 40th annual EMSA meeting, Washington, DC, p 736Google Scholar
  37. 37.
    Segawa M, Taniyama A, Shindo D (1998) HREM observation of the interface between Laves-phases and matrix phases in Inconel 718 by using a highvoltage electron microscope. ISIJ Int 38:1375CrossRefGoogle Scholar
  38. 38.
    Sears VF, Shelley SA (1991) Debye-Waller factor for elemental crystals. Acta Cryst A47:441Google Scholar
  39. 39.
    Ferrel RA (1956) Angular dependence of the characteristic energy loss of electrons passing through metal foils. Phys Rev 101:554ADSCrossRefGoogle Scholar
  40. 40.
    Spence JCH, Zuo JM (1992) Electron microdiffraction. Plenum, New YorkGoogle Scholar
  41. 41.
    Gomyo A, Makita K, Hino I, Suzuki T (1994) Observation of a new ordered phase in AlxIn1_xAs alloy and relation between ordering structure and surface reconstruction during molecular-beamepitaxial growth. Phys Rev Lett 72:673ADSCrossRefGoogle Scholar
  42. 42.
    Shindo D, Spence JCH, Gomyo A (1995) Evaluation of electron diffuse scattering by energy filtering. In: Shin KS, Yoon JK, Kim SJ (eds) Proceedings of the 2nd Pacific Rim International Conference on advanced materials and processing. Korean Institute of Metals and Materials, Seoul, p 1077Google Scholar
  43. 43.
    Shindo D, Gomyo A, Zuo J-M, Spence JCH (1996) Short-range ordered structure of Ga0.47In0.53As studied by energy-filtered electron diffraction and HREM. J Electron Microsc 45:99CrossRefGoogle Scholar
  44. 44.
    Murakami Y, Shindo D (1999) Lattice modulation preceding to the R-phase transformation in a Ti50Ni48Fe2 alloy studied by TEM with energyfiltering. Mater Trans JIM 40:1092Google Scholar
  45. 45.
    Shindo D, Murakami Y (2000) Advanced transmission electron microscopy study on premartensitic state of Ti50Ni48Fe2. Sci Technol Adv Mater 1:117CrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Daisuke Shindo
    • 1
  • Tetsuo Oikawa
    • 2
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendai, MiyagiJapan
  2. 2.Application and Research CenterJEOL Ltd.Akishima, TokyoJapan

Personalised recommendations