Skip to main content
  • 1159 Accesses

Abstract

Electron energy-loss spectroscopy (EELS) is one of the most popular analytical electron microscopy techniques, similar to energy dispersive X-ray spectroscopy (EDS). In the past, EELS was thought to be effective in compositional analysis only for light elements but useless in general for quantitative analysis in comparison with EDS. However, the accuracy of analysis by EELS is much improved recently owing to high performance of the detector and usage of a FEG. Furthermore, an energy-filter system that provides energy-filtered images has been installed on an electron microscope. Thus, currently EELS has attracted much attention for new applications such as elemental mapping and background subtraction in electron diffraction patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shuman H (1981) Parallel recording of electron energy loss spectra. Ultramicroscopy 6:163

    Google Scholar 

  2. Krivanek OL, Ahn CC, Keeney RB (1987) Parallel detection electron spectrometer using quadrupole lenses. Ultramicroscopy 22:103

    Article  Google Scholar 

  3. Terauchi M, Kuzuo R, Satoh F, Tanaka M, Tsuno K, Ohyama J (1991) Performance of a new highresolution electron energy-loss spectroscopy microscope. Microsc Microanal Microstruct 2:351

    Article  Google Scholar 

  4. Lee C-W, Ikematsu Y, Shindo D (2002) Measurement of mean free paths for inelastic electron scattering of Si and Si02. J Electron Microsc, p 143

    Google Scholar 

  5. Oikawa T, Bando Y, Hosoi J, Kokubo Y (1985) Advantages of a HVEM in electron energy loss spectroscopy: in situ experiments with high voltage electron microscopes. In: Proceeding of the international symposium on “behavior of lattice imperfections in materials-in situ experiments with HVEM”, Osaka, 409

    Google Scholar 

  6. Egerton RF (1978) Quantitative energy-loss spectroscopy. In: Johari O (ed) Scanning electron microscopy. SEM, Chicago, 1, p 133

    Google Scholar 

  7. Isaacson MS, Silcox J (1976) Report of a workshop on analytical electron microscopy held at Cornell University. Ultramicroscopy 2:89

    Article  Google Scholar 

  8. Suenaga K, Ténce M, Mory C, Colliex C, Kato H, Okazaki T, Shinohara H, Hirahara K, Bandow S, Iijima S (2000) Element-selective single atom imaging. Science 290:2280

    Article  ADS  Google Scholar 

  9. Egerton RF (1996) Electron energy-loss spectroscopy in the electron microscope, 2nd edn. Plenum, New York

    Book  Google Scholar 

  10. Raether H (1980) Excitation of plasmons and interband transitions by electrons. In: Springer tracts in modern physics, vol 88 Springer, Berlin Heidelberg New York

    Google Scholar 

  11. Auerhammer JM, Rez P (1989) Dipole-fobidden excitations in electron-energy-loss spectroscopy. Phys Rev B40:2024

    ADS  Google Scholar 

  12. Jones W, Sparrow TG, Williams BG, Herley PJ (1984) Evidence for the formation of single crystals of sodium metal during the decomposition of sodium aluminum hydride: an electron microscopic study. Mater Lett 2:377

    Article  Google Scholar 

  13. Kunz C (1966) Messung Charakteristischer Energieverluste von Elektronen an leichtoxydierbaren Metallen im Ultrahochvakuum. Z Phys 196:311

    Article  ADS  Google Scholar 

  14. Kloos T (1973) Plasmaschwingungen in Al, Mg, Li, Na and K angeregt durch schnelle Elektronen. Z Phys 265:225 15.

    Google Scholar 

  15. Daniels J, Festenberg CV, Raether H, Zeppenfeld K (1970) Optical constants of solids by electron spectroscopy. In: Springer tracts in modern physics, vol 54 Springer, Berlin Heidelberg New York, p 78

    Google Scholar 

  16. Zeppenfeld K, Raether H (1966) Energieverluste von 50 keV-Elektronen an Ge und Si. Z Phys 193:471

    Article  ADS  Google Scholar 

  17. Sueoka O (1965) Plasma oscillation of electrons in Be, Mg, Al, Si, Ge, Sn, Sb and Bi. J Phys Soc Jpn 20:2203

    Article  ADS  Google Scholar 

  18. Aiyama T, Yada K (1974) Plasmon damping in Be, Mg, Al, Si, Ge and Sn. J Phys Soc Jpn 36:1554

    Article  ADS  Google Scholar 

  19. Oikawa T, Hosoi J, Inoue M, Harada Y (1982) Applications of electron energy analyzer. JEOL News 20E:8

    Google Scholar 

  20. Nishino D, Nakafuji A, Yang J-M, Shindo D (1998) Precise morphology analysis on platelet-type hematite particles by transmission electron microscopy. ISIJ Int 38:1369

    Article  Google Scholar 

  21. Egerton RF (1980) Instrumentation and software for energy-loss microanalysis. In: Johari O (ed) Scanning electron microscopy. SEM, Chicago, 1, p 41

    Google Scholar 

  22. Lee Y- S, Murakami Y, Shindo D, Oikawa T (2000) Effect of scattering angle on energy loss near-edge structure of h-BN. Mater Trans JIM 41:555

    Google Scholar 

  23. Ichinose H, Zhang Y, Ishida Y, Ito K, Nakanose M (1996) Morphology, atomic structure and electron structure of artificial diamond grain boundary. JEOL News 32E:16

    Google Scholar 

  24. Hosoi J, Oikawa T, Kokubo Y (1985) Computed deconvolution in electron energy loss spectroscopy (EELS). J Electron Microsc 34:73

    Google Scholar 

  25. Shindo D, Ohishi K, Hiraga K, Syono Y, Hojou K, Furuno S (1991) Oxygen K-edge fine structure of La2-xMxCuO4, (M = Sr, Ba and Ca) studied by electron energy loss spectroscopy. Mater Trans JIM 32:872

    Google Scholar 

  26. Murakami Y, Shindo D, Chiba H, Kikuchi M, Syono Y (1999) Charge ordering in Bi1-xCaxMnO3 (x > 0.75) studied by electron-energy-loss spectroscopy. Phys Rev B59:6395

    ADS  Google Scholar 

  27. Pearson DH, Fultz B, Ahn CC (1988) Measurements of 3d state occupancy in transition metals using electron energy loss spectrometry. Appl Phys Lett 53:1405

    Article  ADS  Google Scholar 

  28. Murakami Y, Shindo D, Otsuka K, Oikawa T (1998) Electronic structure changes associated with a martensitic transformation in Ti50Ni48Fe2 alloy studied by electron energy-loss spectroscopy. J Electron Microsc 47:301

    Article  Google Scholar 

  29. Shindo D, Hiraga K, Tsai A-P, Chiba A (1993) Cu L2,3 white lines of Cu compounds studied by electron energy loss spectroscopy. J Electron Microsc 42:48

    Google Scholar 

  30. Zanchi G, Perez JP, Sevely J (1975) Adaptation of a magnetic filtering device on a one megavolt electron microscope. Optik 43:495.

    Google Scholar 

  31. Castaing R, Hennequin JF, Henry L, Slodgian G (1967) The magnetic prism as an optical system. In: Septier A (ed) Focusing of charged particle, Academic Press, New York, p 265

    Google Scholar 

  32. Krivanek OL, Gubbens AJ, Dellby N (1991) Developments in EELS instrumentation for spectroscopy and imaging. Microsc Microanal Microstrct 2:315

    Article  Google Scholar 

  33. Hashimoto H, Makita Y, Nagaoka N (1992) Atomic structure images formed by core loss electrons. In: Bailey GW, Bentley J, Small JA (eds) Proceedings of the 50th Annual EMSA Meeting, Boston, p 1194

    Google Scholar 

  34. Ajika N, Hashimoto H, Endo H, Yamaguchi K, Tomita M, Egerton RF (1983) Construction of analyzer for energy-filtered lattice image. In: Proceedings of the Japanese Society of Electron Microscopy, annual meeting, p 134 (in Japanese)

    Google Scholar 

  35. Taya S, Taniguchi Y, Nakazawa E, Usukura J (1996) Development of γ--type energy filtering TEM. J Electron Microsc 45:307

    Article  Google Scholar 

  36. Oikawa T, Sasaki H, Matsuo T, Kokubo Y (1982) Elemental filtergrams obtained by means of electron energy analyzer combined with image storage system. In: Bailey GW (ed) Proceedings of the 40th annual EMSA meeting, Washington, DC, p 736

    Google Scholar 

  37. Segawa M, Taniyama A, Shindo D (1998) HREM observation of the interface between Laves-phases and matrix phases in Inconel 718 by using a highvoltage electron microscope. ISIJ Int 38:1375

    Article  Google Scholar 

  38. Sears VF, Shelley SA (1991) Debye-Waller factor for elemental crystals. Acta Cryst A47:441

    Google Scholar 

  39. Ferrel RA (1956) Angular dependence of the characteristic energy loss of electrons passing through metal foils. Phys Rev 101:554

    Article  ADS  Google Scholar 

  40. Spence JCH, Zuo JM (1992) Electron microdiffraction. Plenum, New York

    Google Scholar 

  41. Gomyo A, Makita K, Hino I, Suzuki T (1994) Observation of a new ordered phase in AlxIn1_xAs alloy and relation between ordering structure and surface reconstruction during molecular-beamepitaxial growth. Phys Rev Lett 72:673

    Article  ADS  Google Scholar 

  42. Shindo D, Spence JCH, Gomyo A (1995) Evaluation of electron diffuse scattering by energy filtering. In: Shin KS, Yoon JK, Kim SJ (eds) Proceedings of the 2nd Pacific Rim International Conference on advanced materials and processing. Korean Institute of Metals and Materials, Seoul, p 1077

    Google Scholar 

  43. Shindo D, Gomyo A, Zuo J-M, Spence JCH (1996) Short-range ordered structure of Ga0.47In0.53As studied by energy-filtered electron diffraction and HREM. J Electron Microsc 45:99

    Article  Google Scholar 

  44. Murakami Y, Shindo D (1999) Lattice modulation preceding to the R-phase transformation in a Ti50Ni48Fe2 alloy studied by TEM with energyfiltering. Mater Trans JIM 40:1092

    Google Scholar 

  45. Shindo D, Murakami Y (2000) Advanced transmission electron microscopy study on premartensitic state of Ti50Ni48Fe2. Sci Technol Adv Mater 1:117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Japan

About this chapter

Cite this chapter

Shindo, D., Oikawa, T. (2002). Electron Energy-Loss Spectroscopy. In: Analytical Electron Microscopy for Materials Science. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66988-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66988-3_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-70336-5

  • Online ISBN: 978-4-431-66988-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics