Basic Principles of Analytical Electron Microscopy

  • Daisuke Shindo
  • Tetsuo Oikawa


Before going into a detailed explanation of the hardware of transmission electron microscopes and analytical methods, it is necessary to understand some fundamental aspects. These areas include the interactions between incident electrons and materials, the basic principles of analytical electron microscopy, and the processing of analytical data.


Inelastic Scattering Analytical Electron Microscopy Incident Electron Plasmon Excitation Elastic Scattering Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shindo D, Hiraga K (1998) High-resolution electron microscopy for materials science. Springer, TokyoCrossRefGoogle Scholar
  2. 2.
    Wentzel G (1927) Zwei Bemerkunger über die Zerstreuung Korpuskularer Strahlen als Beugungserscheinung. Z Physik 40:590ADSCrossRefGoogle Scholar
  3. 3.
    Mott NF, Massey HWW (1965) The theory of atomic collision. Oxford University Press, OxfordGoogle Scholar
  4. 4.
    Cosslett VE, Thomas RN (1964) Multiple scattering of 5–30 keV electrons in evaporated metal films. I. Total transmission and angular distribution. Br J Appl Phys 15:883ADSCrossRefGoogle Scholar
  5. 5.
    McKinley WA, Freshbach H (1948) The Coulomb scattering of relativistic electrons by nuclei. Phys Rev 74:1759ADSCrossRefGoogle Scholar
  6. 6.
    Powell CJ (1976) Cross sections for ionization of inner-shell electrons by electrons. Rev Mod Phys 48:33ADSCrossRefGoogle Scholar
  7. 7.
    Powell CJ (1976) Use of Monte Carlo calculations. National Bureau of Standards Special Publication 460. NBS, Washington, DC, p 97Google Scholar
  8. 8.
    Goldstein JI, Costley JL, Lorimer GW, Reed SJB (1977) Quantitative X-ray analysis in the electron microscope. In: Johari O (ed) Proceedings of the workshop on analytical electron microscopy, scanning electron microscopy, Chicago, vol 1, p 315Google Scholar
  9. 9.
    Lee C-W, Kidu S, Oikawa T, Shindo D (2001) Estimation of electron beam broadening in specimen for analytical electron microscopy. In: Proceedings Microscopy and Microanalysis, Long Beach, California, vol 7. Springer, New York, p 204Google Scholar
  10. 10.
    Shindo D, Hiraga K, Hirabayashi M, Kikuchi M, Syono Y, Furuno S, Hojou K, Soga T, Otsu H (1989) In situ observation of oxygen K-edge fine structure of YBa2Cu307-Y by EELS. J Electron Microsc 38:155Google Scholar
  11. 11.
    Shindo D, Hiraga K, Hirabayashi M, Kobayashi N, Kikuchi M, Kusaba K, Syono Y, Muto Y (1988) Analytical electron microscopic study of high-Ta superconductor Bi-Ca-Sr-Cu-O. Jpn J Appl Phys 27:L2048ADSCrossRefGoogle Scholar
  12. 12.
    Taniyama A, Shindo D, Hiraga K, Oikawa T, Kersker M (1997) Database of electron microscope images on the World Wide Web. In: Proceedings Microscopy and Microanalysis, Cleveland. Springer, New York, p 1105Google Scholar
  13. 13.
    Shindo D, Ikematsu Y, Lim S-H, Yonenaga I (2000) Digital electron microscopy on advanced materials. Mater Characterization 44:375CrossRefGoogle Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Daisuke Shindo
    • 1
  • Tetsuo Oikawa
    • 2
  1. 1.Institute of Multidisciplinary Research for Advanced MaterialsTohoku UniversitySendai, MiyagiJapan
  2. 2.Application and Research CenterJEOL Ltd.Akishima, TokyoJapan

Personalised recommendations