A Mathematical Theory of NMR Quantum Computations

  • Tetsuro Nishino
Conference paper


In this paper, we develop a theory of bulk quantum computations such as NMR (Nuclear Magnetic Resonance) quantum computations. For this purpose, we first define bulk quantum Turing machines (BQTMs for short) as a model of bulk quantum computation. Then, we define complexity classes EBQP, BBQP and ZBQP as counterparts of the quantum complexity classes EQP, BQP and ZQP, respectively, and show that EBQP=EQP, BBQP=BQP, and ZBQP=ZQP. This implies that BQTMs are polynomially related to ordinary QTMs as long as they are used to solve decision problems. We also show that these two types of QTMs are also polynomially related when they solve a function problem which has a unique solution. Furthermore, we show that BQTMs can solve certain instances of NP-complete problems efficiently.


Quantum Computation Turing Machine Boolean Expression Satisfiability Problem 35th Annual IEEE Symposium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, C. H.: “Logical Reversibility of Computation”, IBM J. Res. Dey., Vol. 6, pp. 525–532 (1973).CrossRefGoogle Scholar
  2. 2.
    Bernstein, E., and Vazirani, U. “Quantum Complexity Theory”, in Proc. 25th Annual ACM Symposium on Theory of Computing, ACM, New York, 1993, pp.11–20. Also in Special issue of SIAM J. Comp., October, 1997.Google Scholar
  3. 3.
    Brun, T., and Schack, R.: “Realizing the quantum baker’s map on an NMR quantum computer”, quant-ph/9807050, 1998.Google Scholar
  4. 4.
    Chuang, I. L., Gershenfeld, N., and Kubinec, M. G.: “Experimental Implementation of Fast Quantum Serching”, Phys. Rev. Letters, Vol. 80, Issue 15, pp. 3408–3411 (1998).CrossRefGoogle Scholar
  5. 5.
    Chuang, I. L., Gershenfeld, N., Kubinec, M.G., and Leung, D.W.: “Bulk Quantum Computation with Nuclear Magnetic Resonance: Theory and Experiment”, Proc. R. Soc. Lond., Vol. A 454, pp. 447–467 (1998).zbMATHCrossRefGoogle Scholar
  6. 6.
    Cory, D. G., Fahmy, A. F., and Havel, T. F. “Ensemble Quantum Computing by Nuclear Magnetic Resonance Spectroscopy”, Proc. Natl. Acad. Sci. 94, pp. 1634–1639 (1997).CrossRefGoogle Scholar
  7. 7.
    Deutsch, D.: “Quantum Theory,the Church-Turing Principle and the Universal Quantum Computer”, Proc. R. Soc. Lond., Vol. A 400, pp. 97–117 (1985).MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Dorai, K., Kumar, A., and Kumar A.: “Implementing quantum logic operations, pseudo-pure states and the Deutsch-Jozsa algorithm using non-commuting selective pulses in NMR”, quant-ph/9906027, 1999.Google Scholar
  9. 9.
    Fang, X., Zhu, X., Feng, NI., Mao, X., and Du, F.: “Experimental Implementation of Dense Coding Using Nuclear Magnetic Resonance”, quant-ph/9906041, 1999.Google Scholar
  10. 10.
    Fu, L., Luo, J., Xiao, L., and Zeng, X.: “Experimental Realization of Discrete Fourier Transformation on NMR Quantum Computer”, quant-ph/9905083, 1999.Google Scholar
  11. 11.
    Gershenfeld, N., and Chuang, I. L.: Science, Vol. 275, p. 350 (1997).MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Grover, L. “A Fast Quantum Mechanical Algorithm for Database Search, in Proc. 28th Annual ACM Symposium on Theory of Computing, ACM, New York, 1996, pp. 212–219.Google Scholar
  13. 13.
    Havel, T. F., Somaroo, S. S., Tseng C.-H., and Croy, D. G. “Principles and Demonstrations of Quantum Information Processing by NMR Spectroscopy”, quant-ph/9812086, 1998.Google Scholar
  14. 14.
    Jones, J. A., and Mosca, M.: “Approximate quantum counting on an NMR ensemble quantum computer”, quant-ph/9808056, 1998.Google Scholar
  15. 15.
    Jones, J. A., and Knill, E.: “Efficient Refocussing of One Spin and Two Spin Interactions for NMR Quantum Computation”, quant-ph/9905008, 1999.Google Scholar
  16. 16.
    Linden, N., Barjat, H., and Freeman, R.: “An implementation of the Deutsch-Jozsa algorithm on a three-qubit NMR quantum computer “, quantph/9808039, 1998.Google Scholar
  17. 17.
    Linden, N., and Popescu, S.: “Good dynamics versus bad kinematics. Is entanglement needed for quantum computation ?”, quant-ph/9906008, 1999.Google Scholar
  18. 18.
    Luo, J., and Zeng, X.: “NMR Quantum Computation with a hyperpolarized nuclear spin bulk”, quant-ph/9811044, 1998.Google Scholar
  19. 19.
    Marx, R., Fahmy, A. F., Myers, J. M, Bermel, W., and Glaser, S. J.: “Realization of a 5-Bit NMR Quantum Computer Using a New Molecular Architecture”, quant-ph/9905087, 1999.Google Scholar
  20. 20.
    Pravia, M., Fortunato, E., Weinstein, Y., Price, M. D., Teklemariam, G., Nelson, R. J., Sharf, Y., Somaroo, S., Tseng, C. H., Havel, T. F., and Cory, D. G.: “Observations of Quantum Dynamics by Solution-State NMR Spectroscopy”, quant-ph/9905061, 1999.Google Scholar
  21. 21.
    Schulman, L. J., and Vazirani, U. “Scalable NMR Quantum Computaion”, quant-ph/9804060, 1998.Google Scholar
  22. 22.
    Shor, P. W.: “Algorithms for Quantum Computation: Discrete Log and Factoring”, in Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp.124–134. Also in Special issue of SIAM J. Comp., October, 1997.Google Scholar
  23. 23.
    Simon, D. R. “On the Power of Quantum Computation”, in Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science, 1994, pp.116–123. Also in Special issue of SIAM J. Comp., October, 1997.Google Scholar
  24. 24.
    Somaroo, S., Tseng, C. H., Havel, T. F., Laflamme, R., and Cory, D. G.: “Quantum Simulations on Quantum Computer”, quant-ph/9905045, 1999.Google Scholar
  25. 25.
    Vandersypen, L. M. K., Yannoni, C. S., Sherwood, M. H., and Chuang, I. L.: “Realization of effective pure states for bulk quantum computation”, quantph/9905041, 1999.Google Scholar
  26. 26.
    Valiant, L. G., and Vazirani, V. V.: “NP is as easy as detecting unique solutions”, Theoretical Computer Science, Vol. 47, pp. 85–93 (1986).MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Wei, H., Xue, X., and Morgera, S. D. “NMR Quantum Automata in Doped Crystals”, quant-ph/9805059, 1998.Google Scholar
  28. 28.
    Yao, A. “Quantum Circuit Complexity”, in Proc. 34th Symposium on Foundations of Computer Science, pp.352–361, IEEE Press (1993).Google Scholar

Copyright information

© Springer Japan 2002

Authors and Affiliations

  • Tetsuro Nishino
    • 1
  1. 1.Department of Information and Communication EngineeringThe University of Electro — CommunicationsChofu, TokyoJapan

Personalised recommendations