Advertisement

Introductory Review: Calcium Channels and Modulation

  • L. Gandía
  • A. Albillos
  • C. Montiel
  • A. G. García

Abstract

Voltage-dependent Ca2+ channels are strategically located in the plasmalemma of excitable cells to initiate, mediate, or regulate important and different Ca2+-dependent functions, i. e., cell excitability, muscle contraction, neurotransmitter and hormone release, or gene transcription. The combination of patch-clamp techniques (Hamill et al. 1981) with various marine and insect atoxins (Olivera et al. 1994) as well as molecular biology approaches (Striessnig et al. 1998), have revealed a considerable diversity in their primary structures, biophysics, pharmacology, regulation, and expression in different mammalian tissues and species. This introductory review to the section of “Ca2+ currents and modulation” of this book deals with aspects related to the diversity of Ca2+ channels, their kinetic and pharmacological characteristics, their species differences, their molecular structure and their regulation by voltage, [Ca2+]i, phosphorylation and intracellular second messengers. Their regulation by neurotransmitters via a membrane-delimited G-protein pathway is discussed in a more detailed manner in the chapter “Exocytosis calcium channels: autocrine/paracrine modulation” in this section of the book. Several reviews that deal in more detail with these different aspects of Ca2+ channels are available (Hagiwara and Byerly 1981; Carbone and Swandulla 1989; Scott et al. 1991; Tsien et al. 1991; Olivera et al. 1994; Hille, 1994; Hoffmann et al. 1994; Wickman and Clapham 1995; Garcia et al. 1997; Uchitel, 1997; Dolphin 1998).

Keywords

Chromaffin Cell Adrenal Chromaffin Cell Channel Subtype Bovine Chromaffin Cell Superior Cervical Ganglion Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Adams ME, Bindokas VP, Hasegawa L, et al (1990) ω-Agatoxins: novel calcium channel antagonists of two subtypes from Funnel web spider (Agelenopsis aperta) venom. J Biol Chem 265:861–867PubMedGoogle Scholar
  2. Ahmad SN, Miljanich GP (1988) The calcium antagonist, ω-conotoxin, and electric organnerve terminals: binding and inhibition of transmitter release and calcium influx. Brain Res 453:247–256PubMedCrossRefGoogle Scholar
  3. Ahlijanian MK, Striessnig J, Catterall WA (1991) Phosphorylation of an arlike subunit of an ω-conotoxin-sensitive brain Ca2+ channel by cAMP-dependent protein kinase and protein kinase C. J Biol Chem 266:20192–20197PubMedGoogle Scholar
  4. Akaike N, Tsuda Y, Oyama Y (1988) Separation of current- and voltage-dependent inactivation of calcium current in frog sensory neuron. Neurosci Lett 84:46–50PubMedCrossRefGoogle Scholar
  5. Albillos A, Artalejo AR, Lopez MG, et al (1994) Ca2+ channel subtypes in cat chromaffincells. J Physiol 477:197–213PubMedGoogle Scholar
  6. Albillos A, Garcia AG, Gandia L (1993) ω-Agatoxin-IVA-sensitive calcium channels in bovine chromaffin cells. FEBS Lett 336:259–262Google Scholar
  7. Albillos A, Garcia AG, Olivera BM, et al (1996) Re-evaluation of the P/Q Ca2+ channel components of Ba2+ currents in bovine chromaffin cells superfused with low and high Ba2+ solutions. Pflügers Arch 432:1030–1038PubMedCrossRefGoogle Scholar
  8. Armstrong, D.L. (1989) Ca2+ channel regulation by calcineurin, a Ca2+-activated phosphatase in mammalian brain. Trends Neurosci 12:117–122PubMedCrossRefGoogle Scholar
  9. Artalejo CR, Adams ME, Fox AP (1994) Three types of Ca2+ channels trigger secretion with different efficacies in chromaffin cells. Nature 367:72–76PubMedCrossRefGoogle Scholar
  10. Artalejo CR, Perlman RL, Fox AP (1992) ω-Conotoxin GVIA blocks a Ca2+ current in chromaffin cells that is not of the “classic” N Type. Neuron 8:85–95Google Scholar
  11. Bean BP, Nowycky MC, Tsien RW (1984) ß-adrenergic modulation of Ca2+ channels in frog ventricular heart cells. Nature 307:371–375PubMedCrossRefGoogle Scholar
  12. Belardinelli L, Isenberg G (1983) Actions of adenosine and isoproterenol on isolated mammalian ventricular myocytes. Circ Res 53:287–297PubMedCrossRefGoogle Scholar
  13. Bezprozvanny I, Tsien RW (1995) Voltage-dependent blockade of diverse types of voltagegated Ca channels expressed in Xenopus oocytes by the Ca2+ channel antagonist mibefradil (Ro 40–5967). Mol Pharmacol 48:540–549PubMedGoogle Scholar
  14. Bossu J-L, De Waard M, Feltz A (1981) Inactivation characteristics reveal two calcium current in adult bovine chromaffin cells. J Physiol 437:603–620Google Scholar
  15. Bourinet E, Fournier F, Nargeot J, et al (1992) Endogenous Xenopus-oocyte Ca2+-channels are regulated by protein kinases A and C. FEBS Lett 299:5–9PubMedCrossRefGoogle Scholar
  16. Bowman D, Alexander S, Lodge D (1993) Pharmacological characterisation of the calcium channels coupled to the plateau phase of KCl-induced intracellular free Ca2+ elevation in chicken and rat synaptosomes. Neuropharmacology 32:1195–1202PubMedCrossRefGoogle Scholar
  17. Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channels in Paramecium. Science 202:1203–1206PubMedCrossRefGoogle Scholar
  18. Brust PF, Simerson S, McCue AF, et al (1993) Human neuronal voltage-dependent calcium channels: studies on subunit structure and role in channel assembly. Neuropharmacology 32:1089–1102PubMedCrossRefGoogle Scholar
  19. Cachelin AB, De Peyer JE, Kokubun S, et al (1983) Ca2+ channel modulation by 8-bromocyclic AMP in cultured heart cells. Nature 304:462–464PubMedCrossRefGoogle Scholar
  20. Campbell KP, Leung AT, Sharp AH (1988) The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci 11:425–430PubMedCrossRefGoogle Scholar
  21. Carbone E, Lux HD (1984) A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310:501–502PubMedCrossRefGoogle Scholar
  22. Castellano A, Wei X, Birnbaumer L, et al (1993) Cloning and expression of a neuronal calcium channel ß subunit. J Biol Chem 268:12359- 12366Google Scholar
  23. Chen C, Schofield GG (1993) Nitric oxide modulates Ca2+ currents of superior cervical ganglion neurons. Soc Neurosci Abstr 19:1129Google Scholar
  24. Cox DH, Dunlap K (1992) Pharmacological discrimination of N-type from L-type Ca2+current and its selective modulation by transmitters. J Neurosci 12:906–914PubMedGoogle Scholar
  25. Davis JH, Bradley EK, Miljanich GP, et al (1993) Solution structure of omega-conotoxin GVIA using 2-D NMR spectroscopy and relaxation matrix analysis. Biochemistry 32:7396–7405PubMedCrossRefGoogle Scholar
  26. De Waard M, Campbell KP (1995) Subunit regulation of neuronal a1A Ca2+ channel expressed in Xenopus oocytes. J Physiol 485:619–634PubMedGoogle Scholar
  27. Dolphin AC (1998) Mechanism of modulation of voltage-dependent calcium channels by G proteins. J Physiol 506:3–11PubMedCrossRefGoogle Scholar
  28. Dolphin AC (1991) Regulation of Ca2+ channel activity by GTP binding proteins and second messengers. Biochim Biophys Acta 1091:68–80PubMedCrossRefGoogle Scholar
  29. Eckel L, Gristwood RW, Nawrath H, et al (1982) Inotropic and electrophysiological effects of histamine on human ventricular heart muscle. J Physiol 330:111–123PubMedGoogle Scholar
  30. Farinas I, Solsona C, Marsal J (1992) Omega-conotoxin differentially block acetylcholine and adenosine triphosphate releases from torpedo synaptosomes. Neuroscience 47:641–648PubMedCrossRefGoogle Scholar
  31. Farr-Jones S, Miljanich GP, Nadasdi L, et al (1995) Solution structure of omega-conotoxin MVIIC, a high affinity ligand of P-type calcium channels, using 1H NMR spectroscopy and complete relaxation matrix analysis. J Memb Biol 248:106–124Google Scholar
  32. Fleckenstein A (1983) History of calcium antagonists. Circ Res 52 (Suppl. I): 3–16Google Scholar
  33. Fournier F, Bourinet E, Nargeot J, et al (1993) Cyclic AMP-dependent regulation of P-type Ca2+ channels expressed in Xenopus oocytes. Pflügers Arch 423:173–180PubMedCrossRefGoogle Scholar
  34. Fox AP, Nowycky MC, Tsien RW (1987a) Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. J Physiol 394:149–172PubMedGoogle Scholar
  35. Fox AP, Nowycky MC, Tsien RW (1987b) Single-channel recordings of three types of calcium channels in chick sensory neurones. J Physiol 394:173–200PubMedGoogle Scholar
  36. Franco-Obregón, A., Urena, J. and Lopez-Barneo, J. (1995) Oxygen-sensitive Ca2+ channels in vascular smooth muscle and their possible role in hypoxic arterial relaxation. Proc Natl Acad Sci USA 92:4715–4719PubMedCrossRefGoogle Scholar
  37. Gandîa L, Albillos A, Garcia AG (1993) Bovine chromaffin cells possess FTX-sensitive calcium channels. Biochem Biophys Res Commun 194:671–676PubMedCrossRefGoogle Scholar
  38. Gandîa L, Borges R, Albillos A, et al (1995) Multiple types of calcium channels are present in rat chromaffin cells. Pflügers Arch 430:55–63PubMedCrossRefGoogle Scholar
  39. Gandîa L, Lara B, Imperial JS, et al (1997) Analogies and differences between ω- conotoxins MVIIC and MVIID: binding sites and functions in bovine chromaffin cells. Pflügers Arch Eur J Physiol 435:55–64CrossRefGoogle Scholar
  40. Gandía L, Mayorgas I, Michelena P, et al (1998) Human adrenal chromaffin cell calcium channels: drastic current facilitation in cell clusters, but not in isolated cells. Pflügers Arch. 436:696–704PubMedCrossRefGoogle Scholar
  41. Gârcez-do-Carmo L, Albillos A, Artalejo AR, et al (1993) R56865 inhibits catecholamine release from bovine chromaffin cells by blocking calcium channels. Br J Pharmacol 110:1149–1155PubMedCrossRefGoogle Scholar
  42. Garcia AG, Albillos A, Gandia L, et al (1997) co-toxins, calcium channels and neurosecretion. In “Cellular and Molecular Mechanisms of Toxin Action: Toxins and Signal Transduction” Gutman, Y. and Lazarovici, P. eds. Harwood Academic Publishers, Switzerland, pp. 155–209Google Scholar
  43. Grantham CJ, Main MJ, Cannell MB (1994) Fluspirilene block of N-type calcium current in NGF-differenciated PC12 cells. Br J Pharmacol 111:483–488PubMedCrossRefGoogle Scholar
  44. Gray R, Johnson D (1987) Noradrenaline and ß-adrenoceptor agonists increase activity of voltage-dependent Ca2+ channels in hippocampal neurons. Nature 327:620–622PubMedCrossRefGoogle Scholar
  45. Gutnik MJ, Lux HD, Swandulla D, et al (1989) Voltage-dependent and calcium-dependent inactivation of calcium channel current in identified snail neurones. J Physiol 412:197–200Google Scholar
  46. Hagiwara S, Byerly L (1981) Calcium channel. Ann Rev Neurosci 4:69–125PubMedCrossRefGoogle Scholar
  47. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflügers Arch 391:85–100PubMedCrossRefGoogle Scholar
  48. Hell JW, Yokoyama CT, Wong ST, et al (1993) Differential phosphorylation of two size forms of the neuronal class C L-type Ca2+ channel a 1subunit. J Biol Chem 268:19451–19457PubMedGoogle Scholar
  49. Hernândez-Guijo JM, de Pascual R, Garcia AG, et al (1998) Separation of calcium channel current components in mouse adrenal chromaffin cells superfused with low- and high-barium solutions. Pflügers Arch 436:75–82PubMedCrossRefGoogle Scholar
  50. Hernândez-Guijo JM, Gandia L, de Pascual R, et al (1997) Calcium channel blocking properties of lubeluzole in bovine and mouse chromaffin cells. Br J Pharmacol 122:275–285PubMedCrossRefGoogle Scholar
  51. Hescheler J, Kameyama M, Trautwein W (1986) On the mechanism of muscarinic inhibition of the cardiac Ca current. Pflügers Arch 407:182–189PubMedCrossRefGoogle Scholar
  52. Hescheler J, Tang M, Jastorff B, et al (1987) On the mechanism of histamine induced enhacement of the cardiac Ca2+ current. Pflügers Arch 407:182–189CrossRefGoogle Scholar
  53. Hillyard DR, Monje VD, Mintz IM, et al (1992) A new conus peptide ligand for mammalian presynaptic Ca2+ channels. Neuron 9:69–77PubMedCrossRefGoogle Scholar
  54. Hille B (1994) Modulation of ion channel function by G-protein coupled receptors. Trends Neurosci 17:531–536PubMedCrossRefGoogle Scholar
  55. Hofmann F, Biel M, Flockerzi V (1994) Molecular basis of Ca2+ channel diversity. Ann Rev Neurosci 17:399–418PubMedCrossRefGoogle Scholar
  56. Jahromi BS, Robitaille R, Charlton MP (1992) Transmitter release increases intracellular calcium in perisynaptic Schwann cells in situ. Neuron 8:1069–1077PubMedCrossRefGoogle Scholar
  57. Kasai H, Aosaki T, Fukuda J (1987) Presynaptic Ca-antagonist ω-conotoxin irreversibly blocks N-type Ca channels in chick sensory neurons. Neurosci Res 4:228–235PubMedCrossRefGoogle Scholar
  58. Katz B, Miledi R (1971) The effect of prolonged depolarization on synaptic transfer in the stellate ganglion of the squid. J Physiol 216:503–512.PubMedGoogle Scholar
  59. Kitamura N, Ohta T, Ito S, et al (1997) Calcium channel subtypes in porcine adrenal chromaffin cells. Pflügers Arch 434:179–187PubMedCrossRefGoogle Scholar
  60. Kohno T, Kim JJ, Kobayashi K, et al (1995) Three-dimensional structure in solution of the calcium channel blocker ω-conotoxin MVIIA. Biochemistry 34:10256–10265PubMedCrossRefGoogle Scholar
  61. Kostyuk PG, Lukyanetz EA (1993) Mechanisms of antagonistic action of internal Ca2+ on serotonin-induced potentiation of Ca2+ currents in Helix neurons. Pflügers Arch 424:73–83PubMedCrossRefGoogle Scholar
  62. Lacerda AE, Rampe D, Brown AM (1988) Effects of protein kinase C activators on cardiac Ca2+ channels. Nature 335:249–251PubMedCrossRefGoogle Scholar
  63. Leighton C, Mathie A, Dolphin AC (1994) Modulation by phosphorylation and neurotransmitters of voltage-dependent Ca2+ channel currents in cultured rat cerebellar granule neurons. J Physiol 477:89PGoogle Scholar
  64. Lipscombe D, Bley K, Tsien RW (1988) Modulation of neuronal Ca channels by cAMP and phorbol esters. Soc Neurosci Abst 14:153Google Scholar
  65. Llinâs R, Sugimori M, Lin J-W, et al (1989) Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proc Natl Acad Sci USA 86: 1689–1693PubMedCrossRefGoogle Scholar
  66. Lomax R, Michelena P, Nunez L, et al (1997) Different contribution of L- and Q-type Ca2+ channels to Ca2+ signals and secretion in chromaffin cell subtypes. Am J Physiol 272:C476-C484PubMedGoogle Scholar
  67. Lopez MG, Albillos A, De la Fuente M, et al (1994a) Localized L-type calcium channels control exocytosis in cat chromaffin cells. Pflügers Arch 427:348–354PubMedCrossRefGoogle Scholar
  68. Lopez MG, Villarroya M, Lara B, et al (1994b) Q- and L-type Ca2+ channels dominate the control of secretion in bovine chromaffin cells. FEBS Lett 349:331–337PubMedCrossRefGoogle Scholar
  69. Mathie A, Bernheim L, Hille B (1992) Inhibition of N- and L-type Ca2+ channels by muscarinic in rat sympathetic neurons. Neuron 8:907–914PubMedCrossRefGoogle Scholar
  70. McDonough SI, Swartz KJ, Mintz IM, et al (1996) Inhibition of calcium channels in rat central and peripheral neurons by ω-conotoxin MVIIC. J Neurosci 16:2612–2623PubMedGoogle Scholar
  71. McFadzean I, Mullaney I, Brown DA, et al (1989) Antibodies to the GTP binding protein, G0, antagonize noradrenaline-induced Ca2+ current inhibition in NG108–15 hybrid cell. Neuron 3:177–182PubMedCrossRefGoogle Scholar
  72. Meriney SD, Gray DB, Pilar GR (1994) Somatostatin-induced inhibition of neuronal Ca2+current modulated by cGMP-dependent protein kinase. Nature 369:336–339PubMedCrossRefGoogle Scholar
  73. Mintz IM, Adams ME, Bean BP (1992a) P-type calcium channels in central and peripheral neurons. Neuron 9:1–20CrossRefGoogle Scholar
  74. Mintz IM, Bean BP (1993) Block of calcium channels in rat neurons by synthetic ω-Aga-IVA. Neuropharmacology 32:1161–1169PubMedCrossRefGoogle Scholar
  75. Mintz IM, Venema VJ, Swiderek K, et al (1992b) P-type calcium channels blocked by the spider toxin ω-Aga-IVA. Nature 355:827–829PubMedCrossRefGoogle Scholar
  76. Mishra, S.K. and Hermsmeyer, K. (1994) Selective inhibition of T-type Ca2+ channels by Ro 40–5967. Circ Res 75:144–148PubMedCrossRefGoogle Scholar
  77. Monje VD, Haack JA, Naisbitt SR, et al (1993) A new conus peptide ligand for Ca channel subtypes. Neuropharmacology 32:1141–1149PubMedCrossRefGoogle Scholar
  78. Morad M, Davies NW, Kaplan JH, et al (1988) Inactivation and block of calcium channels by photo-released Ca2+ in dorsal root ganglion neurons. Science 241:842–844PubMedCrossRefGoogle Scholar
  79. Neely A, Wei X, Olcese R, et al (1993) Potentiation by the ß subunit of the ratio of the ionic current to the charge movement in the cardiac calcium channel. Science 262:575–578PubMedCrossRefGoogle Scholar
  80. Nemoto N, Kubo S, Yoshida T, et al (1995) Solution structure of omega-conotoxin MVIIC determined by NMR. Biochem Biophys Res Commun 207:695–700PubMedCrossRefGoogle Scholar
  81. Nishimura S, Takeshima H, Hofmann F,et al (1993) Requirement of the calcium channel ß subunit for functional conformation. FEBS Lett 324:283–286PubMedCrossRefGoogle Scholar
  82. Nowycky MC, Fox AP, Tsien RW (1985) Three types of neuronal calcium channels with different calcium agonist sensitivity. Nature 316:440–443PubMedCrossRefGoogle Scholar
  83. Olivera BM, Miljanich G, Ramachandran J, et al (1994) Calcium channel diversity and neurotransmitter release: the ω-Conotoxins and ω-Agatoxins. Annu Rev Biochem 63:823–867PubMedCrossRefGoogle Scholar
  84. Ophoff RA, Terwindt GM, Frants RR, et al (1998) P/Q-type Ca2+ channel defects in migraine, ataxia and epilepsy. Trends Pharmacol Sci 19:121–127PubMedCrossRefGoogle Scholar
  85. Ophoff RA, Terwindt GM, Vergouwe MN, et al (1996) Familial hemiplegie migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87: 543–552PubMedCrossRefGoogle Scholar
  86. Pallaghy PK, Duggan BM, Pennington MW, et al (1993) Three-dimensional structure in solution of the calcium channel blocker omega-conotoxin. J Mol Biol 234:405–420PubMedCrossRefGoogle Scholar
  87. Pérez-Reyes E, Castellano A, Kim HS, et al (1992) Cloning and expression of a cardiac/brain ß subunit of the L-type calcium channel. J Biol Chem 267:1792–1797PubMedGoogle Scholar
  88. Pérez-Reyes E, Cribbs LL, Daud A, et al (1998) Molecular characterization of a neuronal low-voltage-activated T-type calcium channel. Nature 391:896–900PubMedCrossRefGoogle Scholar
  89. Platano D, Polio A, Carbone E, et al (1996) Up-regulation of L- and non-L, non-N-type Ca2+ channels by basal and stimulated protein kinase C activation in insulin-secreting RINm5F cells. FEBS Lett 391:189–194PubMedCrossRefGoogle Scholar
  90. Randall A, Tsien RW (1995) Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar neurons. J Neurosci 15:2995–3012PubMedGoogle Scholar
  91. Randall AD, Wendland B, Schweizer F, et al (1993) Five pharmacologically distinct high voltage activated Ca2+ channels in cerebellar granule cells. Soc Neurosci Abstr 19:1478Google Scholar
  92. Rane SG, Walsh MP, Dunlap K (1987) Norepinephrine inhibition of sensory neuron Ca2+ current is blocked by a specific protein kinase C inhibitor. Soc Neurosci Abstr 13:793Google Scholar
  93. Regan LJ (1991) Voltage-dependent calcium currents in Purkinje cells from rat cerebellar vermis. J Neurosci 11:2259–2269PubMedGoogle Scholar
  94. Sather WA, Tanabe T, Zhang J.-F, et al (1993) Distinctive biophysical and pharmacological properties of class A (BI) calcium channel α1 subunits. Neuron 11:291–303PubMedCrossRefGoogle Scholar
  95. Satin LS, Cook DL (1989) Calcium current inactivation in insulin-secreting cells is mediated by calcium influx and membrane depolarization. Pflügers Arch 414:1–10PubMedCrossRefGoogle Scholar
  96. Scott RH, Pearson HA, Dolphin AC (1991) Aspects of vertebrate neuronal voltage-activated calcium currents and their regulation. Prog Neurobiol 36:485–520PubMedCrossRefGoogle Scholar
  97. Scott RH, Sweeney MI, Kobrinsky EM, et al (1992) Actions of arginine polyamine on voltage and ligand-activated whole cell currents recorded from cultured neurones. Br J Pharmacol 106:199–207PubMedCrossRefGoogle Scholar
  98. Sevilla P, Bruix M, Santoro J, et al (1993). Three-dimensional structure of ω-conotoxin GVIA determined by 1H NMR. Biochem Biophys Res Commun 192:1238–1244PubMedCrossRefGoogle Scholar
  99. Sierra F, Lorenzo F, Macadar O, et al (1995) N-type Ca2+ channels mediate transmitter release at the electromotoneuron-electrocyte synapses of the weakly electric fish Gymnotus carapo. Brain Res 683:215–220PubMedCrossRefGoogle Scholar
  100. Singer D, Biel M, Lotan I, Flockerzi V, et al (1991) The roles of the subunits in the function of the calcium channel. Science 253:1553–1557PubMedCrossRefGoogle Scholar
  101. Skalicky JJ, Metzler MJ, Ciesla DJ, et al (1993) Solution structure of the calcium channel antagonist omega-conotoxin GVIA. Protein Sci 2:1591–1603PubMedCrossRefGoogle Scholar
  102. Striessnig J, Grabner M, Mitterdorfer J, et al (1998) Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol Sci 19:108–115PubMedCrossRefGoogle Scholar
  103. Strong JA, Fox AP, Tsien RW, et al (1987) Stimulation of protein kinase C recruits covert Ca2+ channels in Aplysia bag cell neurons. Nature 325:714–717PubMedCrossRefGoogle Scholar
  104. Swartz KJ (1993) Modulation of Ca2+ channels by protein kinase C in rat central and peripheral neurons: disruption of G-protein-mediated inhibition. Neuron 11: 305–320PubMedCrossRefGoogle Scholar
  105. Swartz KJ, Merritt A, Bean BP, et al (1993) Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission. Nature 361:165–168PubMedCrossRefGoogle Scholar
  106. Tillotson D (1979) Inactivation of Ca conductance dependent on entry of Ca ions in molluscan neurons. Proc Natl Acad Sci USA 76:1497–1500PubMedCrossRefGoogle Scholar
  107. Tsien RW, Ellinor PT, Horne WA (1991) Molecular diversity of voltage-dependent Ca2+ channels. Trends Pharmacol Sci 12:349–354PubMedCrossRefGoogle Scholar
  108. Uchitel OD (1997) Toxins affecting calcium channels in neurons. Toxicon 35:1161–1191PubMedCrossRefGoogle Scholar
  109. Umemiya M, Berger AJ (1995) Single-channel properties of four calcium channel types in rat motoneurones. J Neurosci 15:2218–2224PubMedGoogle Scholar
  110. Usowicz MM, Sugimori M, Cherksey B, et al (1992) P-type calcium channels in the somata and dendrites of adult cerebellar Purkinje cells. Neuron 9:1185–1199PubMedCrossRefGoogle Scholar
  111. Valentino K, Newcomb R, Gadbois T, et al (1993) A selective N-type calcium channel antagonist protects against neuronal loss after global cerebral ischemia. Proc Natl Acad Sci USA 90:7894–7897PubMedCrossRefGoogle Scholar
  112. Vega T, De Pascual R, Bulbena O, et al (1995) Effects of to-conotoxins on noradrenergic neurotransmission in beating guinea-pig atria. Eur J Pharmacol 276:231–238PubMedCrossRefGoogle Scholar
  113. Villarroya M, de la Fuente M-T, Lopez MG, et al (1997) Distinct effects of co-toxins and various groups of Ca2+-entry inhibitors on nicotinic acetylcholine receptor and Ca2+ channels of chromaffin cells. Eur J Pharmacol 320:249–257PubMedCrossRefGoogle Scholar
  114. Villarroya M, Gandía L, Lara B, et al (1995) Dotarizine versus flunarizine as calcium antagonists in chromaffin cells. Br J Pharmacol 114:369–376PubMedCrossRefGoogle Scholar
  115. Wanke E, Bianchi L, Mantegazza M, et al (1994) Muscarinic regulation of Ca2+ currents in rat sensory neurons: channel and receptor types, dose-response relationships and crosstalk pathways. Eur J Neurosci 6:381–391PubMedCrossRefGoogle Scholar
  116. Wessler I, Dooley DJ, Werhand J, et al (1990) Differential effects of calcium channels antagonists (to-conotoxin GVIA, nifedipine, verapamil) on the electrically-evoked release of [3H]-acetylcholine from the myenteric plexus, phrenic nerve and neocortex of rats. Naunyn-Schmiedeberg’s Arch Pharmacol 341:288–294Google Scholar
  117. Wheeler DB, Randall A, Tsien RW (1994) Roles of N-type and Q-type Ca2+ channels in supporting hippocampal synaptic transmission. Science 264:107–111PubMedCrossRefGoogle Scholar
  118. Wickman K, Clapham DE (1995) Ion channel regulation by G proteins. Physiol Rev 75:865–885PubMedGoogle Scholar
  119. Wiser O, Trus M, Tobi D, Halevi S, et al (1996) The α2/δ subunit of voltage sensitive Ca2+ channels is a single transmembrane extracellular protein which is involved in regulated secretion. FEBS Lett 379:15–20PubMedCrossRefGoogle Scholar
  120. Yang J, Tsien RW (1993) Enhancement of N- and L-type Ca2+ channel currents by protein kinase C in frog sympathetic neurons. Neuron 10:127–136PubMedCrossRefGoogle Scholar
  121. Yatani A, Wilson DL, Brown AM (1983) Recovery of Ca currents from inactivation: the roles of Ca influx, membrane potential, and cellular metabolism. Cell Molec Neurobiol 3:381–395PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 2000

Authors and Affiliations

  • L. Gandía
    • 1
  • A. Albillos
    • 1
  • C. Montiel
    • 1
  • A. G. García
    • 1
    • 2
  1. 1.Instituto de Farmacología Teófilo Hernando, Departamento de Farmacología, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
  2. 2.Servicio de Farmacología Clínica and Instituto de GerontologíaHospital Universitario de la PrincesaMadridSpain

Personalised recommendations