Protein-Protein Interactions

  • Noriyuki Murai
  • Masasuke Yoshida
  • Toshiki Tsurimoto
  • Shun-Ichiro Iemura
  • Takamasa Yamamoto
  • Chiyo Takagi
  • Naoto Ueno


Molecular chaperones are a group of proteins that bind to newly synthesized polypeptides or nonnative proteins caused by various stresses such as heat shock and which assist them to fold to the native structure by protecting them from aggregation. Chaperonin (Hsp 60) is one of the members of the molecular chap eron group and has been extensively studied. Chaperonin binds nonnative pro teins and folds them to the native form in an ATP-dependent fashion. In this chapter we show kinetic analysis of the interaction between chaperonin GroEL (from E. coli) and reduced α-lactalbumin as an example in an experiment with the BIACORE system. As determined by X-ray crystallography, the shape of GroEL is a porous cylinder of 14 identical 57K subunits and is made of 7-fold rotationally symmetrical rings stacked back-to-back with a dyad symmetry (Fig.1.1)[1,2]. Co-chaperonin, GroES, is a heptameric ring of identical 10K subunits. In the presence of ATP (ADP), GroEL and GroES oligomers form asymmetric 1:1 complexes in vitro, where GroES caps the cavity of one ring of GroEL, leaving the cavity in the other ring open [3,4]. Chaperonin has been found to bind many substrate proteins of which the structures are considered to be in an unfolded state. If substrate proteins unfolded in denaturant such as guanidine hydrochloride were diluted into denaturant free buffer, almost all the substrate protein will fold (or aggregate) rapidly and spontaneously.


Sensor Chip Replication Factor Bone Morphogenetic Protein Signal Dissociation Phase Chaperonin GroEL 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braig K, Otwinowski Z, Hegde R, Boisvert D C, Joachimiak A, Horwich A L, Sigler P B (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8À. Nature 371:578–586PubMedCrossRefGoogle Scholar
  2. 2.
    Ishii N, Taguchi H, Sadabe H, Yoshida M (1994) Folding intermediate binds the bottom of bullet-shaped holo-chaperon and is readily accessible to antibody. J. Mol. Biol. 236:691–696PubMedCrossRefGoogle Scholar
  3. 3.
    Todd M J, Viitanen P V, Lorimer G H (1994) Dynamics of the chaperonin ATPase cycle: Implications for facilitated protein folding. Science 265:659–666PubMedCrossRefGoogle Scholar
  4. 4.
    Boisvert D C, Wang J, Otwinowski Z, Horwich A L, Sigler P B (1996) The 2.4 À crystal structure of the bacterial chaperonin GroELcomplexed with ATPgS, Nat. Struct. Biol. 3:170–177PubMedCrossRefGoogle Scholar
  5. 5.
    Hiraoka Y, Segawa T, Kuwajima K, Sugai S, Murai N (1980) a-lactalbumin: a calcium metalloprotein. Biochem. Biophys. Res. Commun. 95:1098–1104PubMedCrossRefGoogle Scholar
  6. 6.
    Kuwajima K (1989) The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins: Struct. Funct. Genet. 6:87–103CrossRefGoogle Scholar
  7. 7.
    Hayer-Hartl M K, Ewbank J J, Creighton T E, Hartl F U (1994) Conformational specificity of the chaperonin GroEL for the compact folding intermediates of a-lactalbumin. EMBO J. 13:3192–3202PubMedGoogle Scholar
  8. 8.
    Okazaki A, Ikura T, Nikaido K, Kuwajima K (1994) The chaperonin GroEL does not recognize apo-oc-lactalbumin in molten globule state. Nat. Struct. Biol. 1:439–446PubMedCrossRefGoogle Scholar
  9. 9.
    Jackson G S, Staniforth R A, Halsall D J, Atkinson T, Holbrook J J, Clarke A R, Burston S G (1993) Binding and hydrolysis of nucleotides in chaperonin catalytic cycle: implication for the mechanism of assisted protein folding. Biochemistry 32:2554–2563PubMedCrossRefGoogle Scholar
  10. 10.
    Aoki K, Taguchi H, Shindo Y, Yoshida M, Ogasahara K, Yutani K, Tanaka N (1995) Calo-rimetric observation of a GroEL-protein binding reaction with little contribution of hydrophobic interactions between GroEL and reduced alpha lactalbumin. J. Biol. Chem. 272:32158–32162CrossRefGoogle Scholar
  11. 11.
    Murai N, Taguchi H, Yoshida M (1995) Kinetic analysis of interaction GroEL and reduced a-lactalbumin J. Biol. Chem. 270:19957–19963.PubMedCrossRefGoogle Scholar
  12. 12.
    Hayer-Hartl M K, Martin J, Hartl F U (1995) Asymmetrical interaction between GroEL and GroES in the ATPase cycle of assisted protein folding. Science 269:836–841PubMedCrossRefGoogle Scholar
  13. 13.
    Nieba L, Nieba-Axmann S E, Persson A, Hamalainen M, Edebratt F, Hansson A, Lidholm J, Magnusson K, Karlsson AF, Pluckthun A (1997) BIACORE analysis of histidine-tagged proteins using a chelating NTA sensor chip. Anal. Biochem. 252:217–228PubMedCrossRefGoogle Scholar
  14. 1.
    Waga S, Stillman B (1994) Anatomy of a DNA replication fork revealed by reconstitution of SV40 DNA replication in vitro. Nature 369:207–212PubMedCrossRefGoogle Scholar
  15. 2.
    Tsurimoto T (1998) Functions of clamp molecules in DNA replication. In: Shimamoto N, Go M (Eds) Structure biology of the genes (In Japanese) Kyouritsu, Tokyo, pp 30–43Google Scholar
  16. 3.
    Fukuda K, Morioka H, Imajou S, Ikeda S, Ohtsuka E, Tsurimoto T (1995) Structure-function relationship of the eukaryotic DNA replication factor, proliferating cell nuclear antigen. J. Biol. Chem. 270:22527–22534PubMedCrossRefGoogle Scholar
  17. 4.
    Waga S, Hannon G J, Beach D, Stillman B (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369:574–578PubMedCrossRefGoogle Scholar
  18. 5.
    Oku T, Ikeda S, Sasaki H, Fukuda K, Morioka H, Ohtsuka E, Yoshikawa H, Tsurimoto T (1998) Functional sites of human PCNA which interact with p21 (Cipl/Wafl), DNA polymerase d and replication factor C. Genes Cells 3:357–369PubMedCrossRefGoogle Scholar
  19. 6.
    Gulbis J M, Kelman Z, Hurwitz J, O’Donnell M, Kuriyan J (1996) Structure of the C-terminal region of p21 WAF1/CIP1 complexed with human PCNA. Cell 87:297–306PubMedCrossRefGoogle Scholar
  20. 1.
    Maeno M, Ong R C, Xue Y, Nishimatsu S, Ueno N, Kung H F (1994) Regulation of primary erythropoiesis in the ventral mesoderm of Xenopus gastrula embryo: evidence for the expression of a stimulatory factor(s) in animal pole tissue. Develop. Biol. 161: 522–529PubMedCrossRefGoogle Scholar
  21. 2.
    Asashima M, Nakano H, Shimada K, Kinoshita K, Ishii K, Shibai H, Ueno N (1990) Mesodermal induction in early amphibian embryos by activin A (erythroid differentiation factor). Roux’s Arch. Develop. Biol. 198: 330–335CrossRefGoogle Scholar
  22. 3.
    Smith J C, Price B M, Van Nimmen K, Huylebroeck D (1990) Identification of a potent Xenopus mesoderm-inducing factor as a homologue of activin A. Nature 345: 729–731PubMedCrossRefGoogle Scholar
  23. 4.
    Thomsen G H, Melton D A (1993) Processed Vgl protein is an axial mesoderm inducer in Xenopus. Cell 74: 433–441PubMedCrossRefGoogle Scholar
  24. 5.
    Graff J M, Thies R S, Song J J, Celeste A J, Melton D A (1994) Studies with a Xenopus BMP receptor suggest that ventral mesoderm-inducing signals override dorsal signals In vivo. Cell 79: 169–179PubMedCrossRefGoogle Scholar
  25. 6.
    Suzuki A, Thies R S, Yamaji N, Song J J, Wozney J M, Murakami K, Ueno N (1994) A truncated bone morphogenetic protein receptor affects dorsal-ventral patterning in the early Xenopus embryo. Proc. Natl. Acad. Sci. USA 91: 10255–10259PubMedCrossRefGoogle Scholar
  26. 7.
    Maeno M, Ong R C, Suzuki A, Ueno N, Kung H F (1994) A truncated bone morphogenetic protein 4 receptor alters the fate of ventral mesoderm to dorsal mesoderm: Roles of animal pole tissue in the development of ventral mesoderm. Proc. Natl. Acad. Sci. USA 91: 10260–10264PubMedCrossRefGoogle Scholar
  27. 8.
    Wilson P A, Hemmati-Brivanlou A (1995) Induction of epidermis and inhibition of neural fate by BMP-4. Nature 376: 331–333PubMedCrossRefGoogle Scholar
  28. 9.
    Suzuki A, Shioda N, Ueno N (1995) Bone morphogenetic protein acts as a ventral mesoderm modifier in early Xenopus embryos. Develop. Growth Different. 37: 581–588CrossRefGoogle Scholar
  29. 10.
    Sasai Y, Lu B, Steinbelsser H, Geissert D, Gont L K, De Robertis EM (1994) Xenopus chordin: A novel dorsalizing factor activated by organizer-specific homeobox gene. Cell 79: 779–790PubMedCrossRefGoogle Scholar
  30. 11.
    Sasai Y, Lu B, Steinbelsser H, De Robertis E M (1995) Regulation of neural induction by the Chd and Bmp-4 antagonistic patterning signals in Xenopus. Nature 376: 333–336PubMedCrossRefGoogle Scholar
  31. 12.
    Smith W C, Harland R M (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840PubMedCrossRefGoogle Scholar
  32. 13.
    Lamb T M, Knecht A K, Smith W C, Stachel S E, Economides A N, Stahl N, Yancopolous G D, Harland R M (1993) Neural induction by the secreted polypeptide noggin. Science 262:713–718PubMedCrossRefGoogle Scholar
  33. 14.
    Hemmati-Brivanlou A, Kelly O G, Melton D A (1994) Follistatin, an antagonist of activin, Is expressed in the Spemann organizer and displays direct neuralizing activity. Cell 77: 283–295PubMedCrossRefGoogle Scholar
  34. 15.
    Piccolo S, Sasai Y, Lu B, De Robertis E M (1996) Dorsovenral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598PubMedCrossRefGoogle Scholar
  35. 16.
    Zimmerman L B, De Jesus-Escobar J M, Harland R M (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599–606PubMedCrossRefGoogle Scholar
  36. 17.
    Nakamura T, Takio K, Eto Y, Shibai H, Tatani K, Sugino H (1990) Activin-binding protein from rat ovary is follistatin. Science 247: 836–838PubMedCrossRefGoogle Scholar
  37. 18.
    Inouye S, Guo Y, De Paolo L, Shimonaka M, Ling N, Shimasaki S (1991) Recombinant expression of human follistatin with 315 and 288 amino acids: Chemical and biological comparison with native porcine follistatin. Endocrinology 129: 815–822PubMedCrossRefGoogle Scholar
  38. 19.
    Natsume T, Tomita S, Iemura S, Kinto N, Yamaguchi A, Ueno N (1997) Interaction between soluble type I receptor for bone morphogenetic protein and bone morphogenetic protein. J. Biol. Chem. 272: 11535–11540PubMedCrossRefGoogle Scholar
  39. 20.
    Iemura S, Yamamoto TS, Takagi C, Uchiyama H, Natsume T, Shimasaki S, Sugino H, Ueno N (1998) Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early xenopus embryo. Proc. Natl. Acad. Sei. USA 95: 9337–9342CrossRefGoogle Scholar

Copyright information

© Springer Japan 2000

Authors and Affiliations

  • Noriyuki Murai
    • 1
  • Masasuke Yoshida
    • 2
  • Toshiki Tsurimoto
    • 3
  • Shun-Ichiro Iemura
    • 4
  • Takamasa Yamamoto
    • 4
  • Chiyo Takagi
    • 4
  • Naoto Ueno
    • 4
  1. 1.The Jikei University School of MedicineMinato-ku, TokyoJapan
  2. 2.Research Laboratory of Resources UtilizationTokyo Institute of TechnologyMidori-ku, YokohamaJapan
  3. 3.Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaJapan
  4. 4.National Institute for Basic BiologyMyodaiji-cho, OkazakiJapan

Personalised recommendations