Combinations with Other Methods

  • Yoshikazu Kurosawa
  • Ichio Shimada
  • Christopher Williams
  • Ichio Shimada
  • Fumio Arisaka


The BIACORE system, differential titration calorimetry (DTC) and a stoppedflow instrument have been used for measurement of physico-chemical constants associated with antigen-antibody interactions. After mutations were systematically introduced into the complementarity-determining regions (CDRs) of antibody that correspond to its antigen-binding site, the effects of mutations on its antigen-binding activity were physico-chemically analyzed. Since antigen-antibody interactions are reversible as shown by the following equation,
$$ Ag + Ab \leftrightarrows Ag \cdot Ab $$
they must obey the rules of thermodynamics as well as the rules of kinetics. The following three equations show the relationships between rate constants (association rate constant k a, dissociation rate constant k d) and an equilibrium constant (affinity constant K A) as well as the relationships among thermodynamic parameters (∆G, ∆H, ∆S).


Nuclear Magnetic Resonance Sedimentation Velocity Nuclear Magnetic Resonance Spectroscopy Sedimentation Coefficient Mass Spectrometry Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wiseman T, Williston S, Brands J F, Llin L -N (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal. Biochem. 179: 131–137PubMedCrossRefGoogle Scholar
  2. 2.
    Ito W, Iba Y, Kurosawa Y (1993) Effects of substititions of closely related amino acids at the contact surface in an antigen-antibody complex on thermodynamic parameters. J. Biol. Chem. 268: 16639–16647PubMedGoogle Scholar
  3. 3.
    Tonomura B, Nakatani H, Ohnishi M, Yamaguchi-Ito J, Hiromi K (1978) Test reaction for a stopped-flow apparatus. Reactions of 2,6-dichlorophenolindophenol and potassium ferricyanide by L-ascorbic acid. Anal. Biochem. 84: 370–383PubMedCrossRefGoogle Scholar
  4. 4.
    Ito W, Kurosawa Y (1993) Development of an artificial antibody system with multiple valency using an Fv fragment fused to a flagment of protein A. J. Biol. Chem. 268: 20668–20675PubMedGoogle Scholar
  5. 5.
    Ito W, Yasui H, Kurosawa Y (1995) Mutations in the complementarity-determining regions do not caused differences in free energy during the process of formation of the activated complex between an antibody and the corresponding protein antigen. J. Mol. Biol. 248: 729–732PubMedCrossRefGoogle Scholar
  6. 6.
    Glasstone S, Ladler K J, Eyring H (1941) In the Theory of Rate Processes. McGraw-Hill, New YorkGoogle Scholar
  7. 1.
    Hillenkamp F, Karas M, Beavis R, Chait B T (1991) Matrix-assisted laser desorption/ionization of biopolymers. Anal. Chem. 63: 1193A-1203APubMedGoogle Scholar
  8. 2.
    Beavis R C, Chait B T (1990) Rapid, sensitive analysis of protein mixtures by mass spectrometry. Proc. Natl Acad. Sci. USA 87: 6873–6877PubMedCrossRefGoogle Scholar
  9. 3.
    Henzel W J, Billeci T M, Stults J T, Wong S C, Grimley C, Wantanabe C (1993) Identifying proteins from two-dimensional gel gels by molecular mass searching of peptide fragments in protein sequence databases. Proc. Natl Acad. Sci. USA 90: 5011–5015PubMedCrossRefGoogle Scholar
  10. 4.
    James P, Quadroni M, Carafoli E, Gonnet G (1993) Protein Identification by mass profile fingerprinting. Biochem. Biophys. Res. Commun. 195: 58–64PubMedCrossRefGoogle Scholar
  11. 5.
    Mann M, Talbo G (1996) Developments in matrix-assisted laser desorption ionisation peptide mass sequence tags. Curr. Opin. Biotechnol. 7: 11–19PubMedCrossRefGoogle Scholar
  12. 6.
    Pappin D C J, Hojrup P, Bleasby A J (1993) Rapid identification of proteins by peptidemass fingerprinting. Curr. Biol. 3: 327–332PubMedCrossRefGoogle Scholar
  13. 7.
    Yates J R III, Speicher S, Griffen P R, Hunkapiller T (1993) Peptide mass maps: a highly informative approach to protein identification. Anal. Biochem. 214: 397–408PubMedCrossRefGoogle Scholar
  14. 8.
    Femnn J B, Mann M, Meng C K, Wong S F, Whitehouse C M (1990) Electrospray ionization-principles and practice. Mass Spectrom. Rev. 9: 37–70CrossRefGoogle Scholar
  15. 9.
    Busch K, Glish G L, McLuckey S A (1988) Mass Spectrometry/ Mass Spectrometry: Techniques and Applications of Tandem Mass Spectrometry. VCH, New YorkGoogle Scholar
  16. 10.
    Louris J N, Cooks R G, Syka J E, Kelley P E, Stafford G C, Todd J F J (1987) Anal. Chem. 59: 1677CrossRefGoogle Scholar
  17. 11.
    Weber-Grabauy M, Kelley P, Syka J, Bradshaw S, Brodbelt J (1987) Proc. 35th ASMS Conf. Mass Spectrom. Allied Topics, Denver, COGoogle Scholar
  18. 12.
    March R E, Hughes R J (1989) Quadrupole Storage Mass Spectrometry. Wiley, New YorkGoogle Scholar
  19. 13.
    Davis S, Aldrich T H, Jones P F, Acheson A, Compton D L, Jain V, Ryan T E, Bruno J, Radziejewski C, Maisonpierre P C, Yancopoulos G D (1996) Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87: 1161–1169PubMedCrossRefGoogle Scholar
  20. 14.
    Sakano S, Serizawa R, Inada T, Iwama A, Itoh A, Kato C, Shimizu Y, Shinkai F, Shimizu R, Kondo S, Ohno M, Suda T (1996) Characterization of a ligand for receptor protein tyrosine kinase HTK expressed in immature hemopoietic cells. Oncogene 13: 813–822PubMedGoogle Scholar
  21. 15.
    Lackmann M, Bucci T, Mann R J, Kravets L A, Viney E, Smith F, Moritz R L, Carter W, Simpson R J, Nicola N A, Mackwell K, Nice E C, Wilks A F, Boyd A W (1996) Purification of the EPH-like receptor HEK using a biosensor-based affinity detection approach. Proc. Natl Acad. Sci. USA 93: 2523–2527PubMedCrossRefGoogle Scholar
  22. 16.
    Krone J, Nelson R, Drogruel D, Williams P, Granzow R (1997) BIA/MS: Interfacing Biomolecular Interaction Analysis with Mass Spectrometry. Anal. Biochem. 242: 124CrossRefGoogle Scholar
  23. 17.
    Nelson R W, Krone J R, Osten J (1997) Surface Plasmon Resonance Biomolecular Interaction Analysis Mass Spectrometry. 1. Chip-Based Analysis. Anal. Chem. 69: 4363–4368PubMedCrossRefGoogle Scholar
  24. 18.
    Roepstorff P (1997) Mass spectrometry in protein studies from genome to function. Curr. Opin. Biotechnol. 8: 6–13PubMedCrossRefGoogle Scholar
  25. 19.
    Nelson R W, Krone J R, Osten J (1997) Surface Plasmon Resonance Biomolecular Interaction Analysis Mass Spectrometry. 2. Fiber Optic-Based Analysis. Anal. Chem. 69: 4369–4374PubMedCrossRefGoogle Scholar
  26. 1.
    Wüthrich K (1986) NMR of Proteins and Nucleic Acids. John Wiley & SonsGoogle Scholar
  27. 2.
    Kainosho M, Tsuji T ( 1982) Assignment of the three methionyl carbonyl carbon resonances in Streptomyces subtilisin inhibitor by a carbon-13 and nitrogen-15 double-labeling tech­nique. A new strategy for structural studies of proteins in solution. Biochemistry 21: 6273–6279PubMedCrossRefGoogle Scholar
  28. 3.
    Gouda H, Torigoe H, Saito A, Sato M, Arata Y, Shimada I (1992) Three-dimensional Solu­tion Structure of the B Domain of Staphylococcal Protein A: Comparison of the Solution and Crystal Structures. Biochemistry 31: 9665–9672PubMedCrossRefGoogle Scholar
  29. 4.
    Gouda H, Shiraishi M, Takahashi H, Kato K, Torigoe H, Arata Y, Shimada I (1998) NMR Study on the Interaction between the B Domain of Staphylococcal Protein A and the Fc Portion of Immunoglobulin G. Biochemistry 37: 129–136PubMedCrossRefGoogle Scholar
  30. 5.
    Nakayama T, Arata A, Shimada I (1993) A Multinuclear NMR Study of the Affinity Matu­ration of Anti-NP Mouse Monoclonal Antibodies: Comparison of Antibody Combining Sites between Primary Response Antibody N1G9 and Secondary Response Antibody 3B62. Biochemistry 32: 13961–13968PubMedCrossRefGoogle Scholar
  31. 6.
    Mizutani R, Miura K, Nakayama T, Shimada I, Arata Y, Satow Y (1995) Three-dimensinal Structures of Fab Fragment and Its (4-Hydroxy-3-Nitrophenyl) Acetate Complex of Mu­rine N1G9 Antibody from Primary Immune Response. J. Mol. Biol. 254: 208–222PubMedCrossRefGoogle Scholar
  32. 1.
    Stafford W T H I (1992) Boundary Analysis in Sedimentation Transport Experiment: A Procedure for Obtaining Sedimentation Coefficient Distributions Using the Time Deriva­tive of the Concentration Profile. Anal. Biochem. 203: 295–301PubMedCrossRefGoogle Scholar
  33. 2.
    Ralston G (1993) Introduction to Analytical Ultracentrifugation. Beckman Instruments, FullertonGoogle Scholar
  34. 3.
    Laue T, Philo J, Hays D. SEDNTERP: available on rasmb ftp site.Google Scholar
  35. 4.
    Dong F, Gogol E P, von Hippel P H (1995) The Phage T4-coded DNA replication helicase (gp41) forms a hexamer upon activation by nucleoside triphosphate. J. Biol. Chem. 270: 7462–7473PubMedCrossRefGoogle Scholar
  36. 5.
    Pintar A, Hennsmann M, Jumel K, Pitkeathly M, Harding S E, Campbell ID (1996) Solu­tion studies of the SH2 domain from the fyn tyrosine kinase: secondary structure, backbone dynamics and protein association. Eur. Biophys. J. 24: 371–380PubMedCrossRefGoogle Scholar
  37. 6.
    Gonzalez L Jr, Plecs J J, Alber T (1996) An engineered allosteric switch in leucine-zipper oligomerization. Nature Struct. Biol. 3: 510–515PubMedCrossRefGoogle Scholar
  38. 7.
    Cantor C R, Schimmel P R (1980) Biophysical Chemistry Part II. Techniques for the study of biological structure and function, pp.555–570, 610–612Google Scholar
  39. 8.
    Hansley P (1996) Defining the structure and stability of macromolecular assemblies in solution: the re-emergence of analytical ultracentrifugation as a practical tool. Structure 4: 367–373CrossRefGoogle Scholar
  40. 9.
    Matsui T, Riniviene B, Goldberg E, Tsugita A, Tanaka N, Arisaka F (1997) Isolation and Characterization of a Molecular Chaperone, gp 57A, of Bacteriopahge T4. J. Bacteriol. 179: 1846–1851PubMedGoogle Scholar
  41. 10.
    McRorie D K, Voelker P J (1993) Self-Associating Systems in the Analytical Ultracentri-fuge. Beckman Instruments, FullertonGoogle Scholar

Copyright information

© Springer Japan 2000

Authors and Affiliations

  • Yoshikazu Kurosawa
    • 1
  • Ichio Shimada
    • 2
  • Christopher Williams
    • 3
  • Ichio Shimada
    • 2
  • Fumio Arisaka
    • 4
  1. 1.Institute for Comprehensive Medical ScienceFujita Health UniversityKutukake-cho, ToyoakeJapan
  2. 2.Graduate School of Pharmaceutical SciencesThe University of TokyoBunkyo-ku, TokyoJapan
  3. 3.Millennium PharmaceuticalsCambridgeUSA
  4. 4.Graduate School of Bioscience and BiotechnologyTokyo Institute of TechnologyMidori-ku, YokohamaJapan

Personalised recommendations