Skip to main content

Abstract

Biological membranes are a fluid mosaic complex composed of various proteins and a phospholipid bilayer, which are the major structural components. Analyses of the interaction between the components of cell membranes and other biological ligands are of importance in understanding the biochemical functions of cell membranes. To aid in addressing these analyses, liposomes (rearranged artificial phospholipid membranes) have been widely utilized. Liposomes are the artificial vesicles in which an aqueous volume solution is enclosed by a membrane composed of phospholipids. Application of liposomes has particular advantages in the analysis of the interaction between the components of the cell membrane and other biological ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Masson L, Mazza A, Brousseau R (1994) Stable immobilization of lipid vesicles for kinetic studies using surface plasmon resonance. Anal. Biochem. 218: 405–412

    Article  PubMed  CAS  Google Scholar 

  2. Stachowiak O, Dolder M, Wallimann T (1996) Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer. Biochemistry 35: 15522–15528

    Article  PubMed  CAS  Google Scholar 

  3. MacKenzie C R, Hirama T, Lee K K, Altman E, Young M (1997) Quantitative analysis of bacterial toxin affinity and specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem. 272: 5533–5538

    Article  PubMed  CAS  Google Scholar 

  4. Nuzzo R G, Allara D L (1983) Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105: 4481–4483

    Article  CAS  Google Scholar 

  5. Nuzzo R G, Zegarski B R, Dubois L H (1987) Fundamental studies of the chemisorption of organosulfur compounds on Au(111). Implications for molecular self-asembly on gold surfaces. J. Am. Chem. Soc. 109:733–740

    Article  CAS  Google Scholar 

  6. Plant A L (1993) Self-assembled phospholipid/alkanethiol biomimetic bilayers on gold. Langmuir 9: 2764–2767

    Article  CAS  Google Scholar 

  7. Plant A L, Gueguetchkeri M, Yap W ( 1994) Supported phospholipid/alkanethiol membranes: insulating properties. Biophys. J. 67: 1126–1133

    Article  PubMed  CAS  Google Scholar 

  8. Plant AL, Brigham-Burke M, Petrella EC, O’Shannessy DJ (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal. Biochem. 226: 342–348

    Article  PubMed  CAS  Google Scholar 

  9. Kuziemco G M, Stroh M, Stevens R C (1996) Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35: 6375–6385

    Article  Google Scholar 

  10. Mann K G, Nesheim M E, Church W R, Haley P, Krishnaswamy S (1990) Surface-depen-dent reactions of the vitamin K-dependent enzyme complexes. Blood 76: 1–16

    PubMed  CAS  Google Scholar 

  11. Zwaal RFA, Schroit A J (1997) Pathophy siologic implications of membrane phospholipid asymmetry in blood cells. Blood 89: 1121–1132

    PubMed  CAS  Google Scholar 

  12. Hoyer L W, Wyshock E G, Colman R W (1994) Coagulation cofactors: factors V and VIII In: Colman R W, Hirsh J, Marder V J, Salzman E W (eds) Hemostasis and Thrombosis: Basic Principles and Clinical Practice, 3rd Edition. J. B. Lippincott Company, Philadelphia, pp l09–133

    Google Scholar 

  13. New R R C (1990) Preparation of liposomes. In: New R R C (ed) Liposomes. Oxford University Press, Oxford, pp33–104

    Google Scholar 

  14. Bangham A D, Standish M M, Watkins J C (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol. 13: 238–252

    Article  PubMed  CAS  Google Scholar 

  15. Olson F, Hunt C A, Szoka F C, Vail W J, Papahadjopoulos D (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim. Biophys. Acta 557: 9–23

    Article  PubMed  CAS  Google Scholar 

  16. Hope M J, Bally M B, Webb G, Cullis PR (1985) Production of large unilamellar vesicles by a rapid extrusion procedure. Characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim. Biophys. Acta 812: 55–65

    Article  PubMed  CAS  Google Scholar 

  17. MacDonald R C, MacDonald R I, Menco B Ph M, Takeshita K, Subbarao N K, Hu L (199l) Small-volume extrusion apparatus for preparation of large unilamellar vesicles. Biochim. Biopys. Acta 1061: 297–303

    Article  Google Scholar 

  18. Gilbert G E, Furie B C, Furie B (1990) Binding of human factor VIII to phospholipid vesicles. J. Biol. Chem. 265: 815–822

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Japan

About this chapter

Cite this chapter

Arai, M. (2000). Lipid-Protein Interactions. In: Nagata, K., Handa, H. (eds) Real-Time Analysis of Biomolecular Interactions. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66970-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66970-8_17

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66972-2

  • Online ISBN: 978-4-431-66970-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics