Sugar-Protein Interactions

  • Yasuro Shinohara
  • Roger MacKenzie
  • Tomoko Hirama


The importance of carbohydrate-lectin interactions in typical multicellular organism events is becoming widely recognized. To clarify the functional roles of these interactions, it is important to evaluate not only sugar-binding specificity but also the mechanism involved. The SPR biosensor is an entirely new assay system for affinity measurements because the interaction can be monitored ki-netically on the solid phase surface. Considering that oligosaccharides usually exist as glycoconjugates and most of the interactions with sugar-recognizing molecules occur on a solid phase surface, this method seems to be quite feasible for the analyses of those interactions.


Surface Plasmon Resonance Sensor Chip Dissociation Rate Constant Unstirred Layer Surface Plasmon Resonance Biosensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Shinohara Y, Sota H, Kim F, Shimizu M, Gotoh M, Tosu M, Hasegawa Y (1995) Use of a biosensor based on surface plasmon resonance and biotinyl glycans for analysis of sugar binding specificities of lectins. J. Biochem. 117: 1076–1082PubMedGoogle Scholar
  2. 2.
    Shinohara Y, Sota H, Gotoh M, Hasebe M, Tosu M, Nakao J, Hasegawa Y, Shiga M (1996) Bifunctional labeling reagent for oligosaccharides to incorporate both chromophore and biotin groups. Anal. Chem. 68: 2573–2579PubMedCrossRefGoogle Scholar
  3. 3.
    Lee Y C (1992) Biochemistry of carbohydrate-protein interaction. FASEB J. 6: 3193–3200PubMedGoogle Scholar
  4. 4.
    Shinohara Y, Hasegawa Y, Kaku H, Shibuya N (1997) Elucidation of the mechanism enhancing the avidity of lectin with oligosaccharides on the solid phase surface. Glycobiology 7: 1201–1208PubMedCrossRefGoogle Scholar
  5. 5.
    Karlsson R, Roos H, Fagerstam L, Persson B (1994) Kinetic and concentration analysis using BIA technology. Methods 6: 99–110CrossRefGoogle Scholar
  6. 6.
    Alon R, Hammer D A, Springer T A (1995) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374: 539–542PubMedCrossRefGoogle Scholar
  7. 7.
    Rice K G, Weisz O A, Barthel T, Lee R T, Lee Y C (1990) Defined geometry of binding between triantennary glycopeptide and the asialoglycoprotein receptor of rat hepatocytes. J. Biol. Chem. 265:18429–18434PubMedGoogle Scholar
  8. 1.
    Brockhausen I, Kuhns W (1997) Glycoproteins and Human Disease. Chapman and Hall, New YorkCrossRefGoogle Scholar
  9. 2.
    Harrison B A, MacKenzie R, Hirama T, Lee K K, Altman E (1998) A kinetics approach to the characterization of an IgM specific for the glycolipid asialo-GMl. J. Immunol. Methods 212: 29–39PubMedCrossRefGoogle Scholar
  10. 3.
    MacKenzie C R, Hirama T, Lee K K, Altman E, Young N M (1997) Quantitative analysis of bacterial toxin specificity for glycolipid receptors by surface plasmon resonance. J. Biol. Chem. 272: 5533–5538PubMedCrossRefGoogle Scholar
  11. 4.
    Bundle D R, Eichler E, Gidney M A J, Meldal M, Ragauskas A, Sigurskjold B W, Sinnott B, Watson D C, Yaguchi M, Young N M (1994) Molecular recognition of a Salmonella trisaccharide epitope by monoclonal antibody Sel55–4. Biochemistry 33: 5172–5182PubMedCrossRefGoogle Scholar
  12. 5.
    MacKenzie C R, Hirama T, Deng S -J, Bundle D R, Narang S. A, Young N M (1996) Analysis by surface plasmon resonance of the influence of valence on the ligand binding affinity and kinetics of an anti-carbohydrate antibody. J. Biol. Chem. 271: 1527–1533PubMedCrossRefGoogle Scholar
  13. 6.
    Karlsson K-A (1995) Microbial recognition of target-cell glycoconjugates. Curr. Opin. Struct. Biol. 5: 622–635PubMedCrossRefGoogle Scholar
  14. 7.
    Merritt E A, Sarfaty S, van den Akker F, L’Hoir C L, Martial J A, Hol W G J (1994) Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 3: 166–177PubMedCrossRefGoogle Scholar
  15. 8.
    Sixma T K, Pronk S E, Kalk K H, van Zanten B A M, Berguis A M, Hol W G J (1992) Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 355: 561–564PubMedCrossRefGoogle Scholar
  16. 9.
    Angstrom J, Teneberg S, Karlsson K -A (1994) Delineation and comparison of gangliosidebinding epitopes for the toxins of Vibrio cholerae, Escherichia coli, and Clostridium tetani: Evidence for overlapping epitopes. Proc. Natl Acad. Sci. USA 91: 11859–11863PubMedCrossRefGoogle Scholar
  17. 10.
    Masson L, Mazza A, Brousseau R (1994) Stable immobilization of lipid vesicles for kinetic studies using surface plasmon resonance. Anal. Biochem. 218: 405–412PubMedCrossRefGoogle Scholar
  18. 11.
    Plant AL, Brigham-Burke M, Petrella E C, O’Shannessy D J (1995) Phospholipid/alkanethiol bilayers for cell-surface receptor studies by surface plasmon resonance. Anal. Biochem. 226: 342–348PubMedCrossRefGoogle Scholar
  19. 12.
    Kuziemko G M, Stroh M, Stevens R C (1996) Cholera toxin affinity and specificity for gangliosides determined by surface plasmon resonance. Biochemistry 35: 6375–6383PubMedCrossRefGoogle Scholar
  20. 13.
    Kopitz J (1997) Glycolipids: Structure and Function. In: Gabius H-J, Gabius S (eds) Glycosciences, Chapman and Hall, Weinheim, pp 163–189Google Scholar
  21. 14.
    Lingwood C A (1996) Aglycone modulation of glycolipid receptor function. Glycoconjugate J. 13:495–503CrossRefGoogle Scholar

Copyright information

© Springer Japan 2000

Authors and Affiliations

  • Yasuro Shinohara
    • 1
  • Roger MacKenzie
    • 2
  • Tomoko Hirama
    • 2
  1. 1.Amersham Pharmacia Biotech K. K.Shinjuku-ku, TokyoJapan
  2. 2.Institute for Biological SciencesNational Research Council CanadaOttawaCanada

Personalised recommendations