Skip to main content

Abstract

Recent studies have revealed that various protein factors have important roles in gene expression. These factors are involved in transcriptional regulation not only by binding to the promoter region of DNA with sequence specificity but also by interacting with one another on DNA. It has also been revealed that some factors bind to DNA indirectly to regulate transcription. These factors, which are called cofactors, are recruited on promoter regions by protein-protein interactions. The mechanism of transcriptional regulation includes many of interactions among biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watanabe H, Wada T, Handa H (1990) Transcription factor E4TF1 contains two subunits with different function. EMBO J. 9: 841–847

    PubMed  CAS  Google Scholar 

  2. Watanabe H, Sawada J-I, Yano K, Yamaguchi K, Goto M, Handa H (1993) cDNA Cloning of Transcription Factor E4TF1 Subunits with Ets and Notch Motifs. Mol. Cell. Biol. 13: 1385–1391

    PubMed  CAS  Google Scholar 

  3. Suzuki F, Goto M, Sawa C, Ito S, Watanabe H, Sawada J-I, Handa H (1998) Functional interactions of transcription factor human GA-binding protein subunits. J. Biol. Chem. 273:29302–29308

    Article  PubMed  CAS  Google Scholar 

  4. Inomata Y, Kawaguchi H, Hiramoto M, Wada T, Handa H (1992) Direct purification of multiple ATF/E4TF3 polypeptides from HeLa cell crude nuclear extracts using DNA affinity latex particles. Anal Biochem. 206: 109–114

    Article  PubMed  CAS  Google Scholar 

  5. Mori T, Nakane M, Hattori T, Matsunaga T, Ihara M, Nikaido O(1991) Simultaneous establishment of monoclonal antibodies specific for either cyclobutane pyrimidine dimer or (6–4)photoproduct from the same mouse immunized with ultraviolet-irradiated DNA. Photochem. Photobiol. 54: 225–232

    Article  CAS  Google Scholar 

  6. Komatsu Y, Tsujino T, Suzuki T, Nikaido O, Ohtsuka E(1997) Antigen structural requirements for recognition by a cyclobutane thymine dimer-specific monoclonal antibody. Nucleic Acid Res. 25: 3889–3894

    Article  PubMed  CAS  Google Scholar 

  7. Kobayashi H, Morioka H, Torizawa T, Kato K, Shimada I, Nikaido O, Ohtsuka E(1998) Specificities and binding rates of anti-(6–4) photoproduct antibody fragments to synthetic thymine photoproducts. J. Biochem. 123: 182–188

    Article  PubMed  CAS  Google Scholar 

  8. Morioka H, Miura H, Kobayashi H, Koizumi T, Fujii K, Asano K, Matsunaga T, Nikaido O, Ohtsuka E (1998) Antibodies specific for (6–4) DNA photoproducts: Cloning, antibody modeling and construction of a single-chain Fv derivative. Biochim. Biophys. Acta 1385: 17–32

    Article  PubMed  CAS  Google Scholar 

  9. Kobayashi H, Morioka H, Nikaido O, Stewart JD, Ohtsuka E (1998) The role of surface lysines in pyrimidine (6–4) pyrimidone photoproduct binding by a high-affinity antibody. Protein Eng. 11:1089–1092

    Article  PubMed  CAS  Google Scholar 

  10. Torizawa T, Kato K, Kimura Y, Asada T, Kobayashi H, Komatsu Y, Morioka H, Nikaido O, Ohtsuka E, Shimada I (1998) 31P NMR study of the interactions between oligo-deoxynucleotides containing (6–4) photoproduct and Fab fragments of monoclonal antibodies specific for (6–4) photoproduct. FEBS Lett. 429:157–161

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi H, Morioka H, Tobisawa K, Torizawa T, Kato K, Shimada I, Nikaido O, Stewart JD, Ohtsuka E (1999) Probing the Interaction between a high-affinity single-chain Fv and pyrimidine (6–4) pyrimidone photodimer by site-directed mutagenesis. Biochemistry 38:532–539

    Article  PubMed  CAS  Google Scholar 

  12. Torizawa T, Kato K, Kato J, Kobayashi H, Komatsu Y, Morioka H, Nikaido O, Ohtsuka E, Shimada I (1999) Conformational multiplicity of the antibody combining site of a monoclonal antibody specific for a (6–4) photoproduct. J. Mol. Biol. 290:731–740

    Article  PubMed  CAS  Google Scholar 

  13. Torizawa T, Yamamoto N, Suzuki T, Nobuoka K, Komatsu Y, Morioka H, Nikaido O, Ohtuka E, Kato K, Shimada I (2000) DNA binding mode of the Fab fragment of a monoclonal antibody specific for cyclobutane pyrimidine dimer. Nucleic Acids Res. 28:944–951

    Article  PubMed  CAS  Google Scholar 

  14. Borrebaeck C A(eds)(1995)Antibody engineering(second edition). Oxford University Press New York

    Google Scholar 

  15. McCafferty J, Hoogenboom H R, Chiswell D J(eds)(1996)Antibody engineering. IRL Press New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Japan

About this chapter

Cite this chapter

Sawada, Ji., Suzuki, F., Morioka, H., Kobayashi, H., Ohtsuka, E. (2000). DNA-Protein Interactions. In: Nagata, K., Handa, H. (eds) Real-Time Analysis of Biomolecular Interactions. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66970-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66970-8_13

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66972-2

  • Online ISBN: 978-4-431-66970-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics