Skip to main content

How Is Emmetropization Controlled? Results of Research on Experimental Myopia

  • Chapter
Book cover Myopia Updates
  • 175 Accesses

Summary

The mechanisms by which emmetropia might be reached in growing eyes is discussed. Although emmetropia might result from normal developmental processes causing eyes to be a certain shape, the preponderance of evidence, especially from the accurate compensation for varying degrees of hyperopic and myopic defocus imposed by spectacle lenses, argues that the visual responses of the eye guide it toward emmetropia by means of a feedback mechanism. Little is known about the details of this control of eye growth, or what the error signal might be that indicates whether the eye is myopic or hyperopic, but there are clues that restrict the possibilities. The hypothesis that compensation is accomplished simply by the rate of ocular elongation being determined by the average amount of blurred or sharp vision, making lens compensation a special case of deprivation myopia, is not supported by most evidence available at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Schaeffel F, Glasser A, Howland HC (1988) Accommodation, refractive error, and eye growth in chickens. Vision Res 28:639–657

    Article  PubMed  CAS  Google Scholar 

  2. Irving EL, Callender MG, Sivak JG (1991) Inducing myopia, hyperopia, and astigmatism in chicks. Optom Vision Sci 68:364–368

    Article  CAS  Google Scholar 

  3. Siegwart JT, Norton TT (1993) Refractive and ocular changes in tree shrews raised with plus or minus lenses. Invest Ophthalmol Vis Sci (ARVO Suppl) 34:1208

    Google Scholar 

  4. Hung L-F, Crawford MLJ, Smith EL (1995) Spectacle lenses alter eye growth and the refractive status of young monkeys. Nature Med 1:761–765

    Article  PubMed  CAS  Google Scholar 

  5. Judge S, Graham B (1995) Differential ocular growth of infant marmoset (Callithrix jacchus jacchus) eyes induced by optical anisometropia combined with alternating occlusion. J Physiol 485P:27P

    Google Scholar 

  6. McFadden S, Wallman J (1995) Guinea pig eye growth compensates for spectacle lenses. Invest Ophthalmol Vis Sci (ARVO Suppl) 36:758

    Google Scholar 

  7. Diether S, Schaeffel F (1996) Local changes in eye growth after imposed local defocus. Invest Ophthalmol Vis Sci ( A RVO Sunnl) 37:S1000

    Google Scholar 

  8. Nickla D, Gottlieb M, Wildsoet C, et al. (1992) Myopic and hyperopic blur cause opposite changes in proteoglycan synthesis of sclera and choroid. Exp Eye Res (Int Loner Eve Res Supol) 55:S109

    Article  Google Scholar 

  9. Wildsoet C, Wallman J (1995) Choroidal and scleral mechanisms of compensation for spectacle lenses in chicks. Vision Res 35:1175–1194

    Article  PubMed  CAS  Google Scholar 

  10. Wallman J, Wildsoet C, Xu A, et al. (1995) Moving the retina: Choroidal modulation of refractive state. Vision Res 35:37–50

    Article  PubMed  CAS  Google Scholar 

  11. Bartmann M, Schaeffel F, Hagel G, et al. (1994) Constant light affects retinal dopamine levels and blocks deprivation myopia but not lens-induced refractive errors in chicks. Vis Neurosci 11:199–208

    Article  PubMed  CAS  Google Scholar 

  12. Li T, Troilo D, Glasser A, et al. (1995) Constant light produces severe corneal flattening and hyperopia in chickens. Vision Res 35:1203–1209

    Article  PubMed  CAS  Google Scholar 

  13. Troilo D, Gottlieb MD, Wallman J (1987) Visual deprivation causes myopia in chicks with optic nerve section. Curr Eve Res 6:993–999

    Article  CAS  Google Scholar 

  14. Wildsoet CF, Pettigrew JD (1988) Experimental myopia and anomalous eye growth patterns unaffected by optic nerve section in chickens: Evidence for local control of eye growth. Clin Vis Sci 3:99–107

    Google Scholar 

  15. Curtin BJ (1985) The myopias: Basic science and clinical management. Harper and Row, Philadelphia

    Google Scholar 

  16. Schaeffel F, Troilo D, Wallman J, et al. (1990) Developing eyes that lack accommodation grow to compensate for imposed defocus. Vis Neurosci 4:177–183

    Article  PubMed  CAS  Google Scholar 

  17. Rohrer B, Schaeffel F, Zrenner E (1992) Longitudinal chromatic aberration and emmetropization: Results from the chicken eye. J Physiol 449:363–376

    PubMed  CAS  Google Scholar 

  18. Zadnik K, Mutti DO (1995) How applicable are animal myopia models to human juvenile-onset myopia. Vision Res 35:1283–1288

    Article  PubMed  CAS  Google Scholar 

  19. Mutti DO, Zadnik K, Adams AJ (1996) Myopia: The nature versus nurture debate goes on. Invest Ophthalmol Vis Sci 37:952–957

    PubMed  CAS  Google Scholar 

  20. Nickla DL, Panos SN, Fugate-Wentzek LA, et al. (1989) What attributes of visual stimulation determine whether chick eyes develop deprivation myopia? Invest Ophthalmol Vis Sci (ARVO Suppl) 30:31

    Google Scholar 

  21. Napper GA, Brennan NA, Barrington M, et al. (1995) The duration of normal visual exposure necessary to prevent form deprivation myopia in chicks. Vision Res 35:1337–1344

    Article  PubMed  CAS  Google Scholar 

  22. Schmid KL, Wildsoet CF (1996) Effects on the compensatory responses to positive and negative lenses of intermittent lens wear and ciliary nerve-section in chicks. Vision Res 36:1023–1036

    Article  PubMed  CAS  Google Scholar 

  23. Gottlieb MD, Wallman J (1987) Retinal activity modulates eye growth: Evidence from rearing in stroboscopic illumination. Soc Neurosci Abstr 13:1297

    Google Scholar 

  24. Schmid DL, Wildsoet CF (1996) Inhibitory effects of stroboscopic light on formdeprivation and lens-induced myopias show different frequency tuning and patterns of axial change in chick. Invest Ophthalmol Vis Sci (ARVO Suppl) 37:S686

    Google Scholar 

  25. Stone RA, Lin T, Laties AM (1991) Muscarinic antagonist effects on experimental chick myopia. Exp Eye Res 52:755–758

    Article  PubMed  CAS  Google Scholar 

  26. Li XX, Schaeffel F, Kohler K, et al. (1992) Dose-dependent effects of 6-hydroxydopamine on deprivation myopia, electroretinograms, and dopaminergic amacrine cells in chickens. Vis Neurosci 9:483–492

    Article  PubMed  CAS  Google Scholar 

  27. McBrien N, Moghaddam HO, Reeder AP (1993) Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci 34:205–215

    PubMed  CAS  Google Scholar 

  28. Schwahn HN, Schaeffel F (1994) Chick eyes under cycloplegia compensate for spectacle lenses despite six-hydroxydopamine treatment. Invest Ophthalmol Vis Sci 35:3516–3524

    PubMed  CAS  Google Scholar 

  29. Wildsoet CF, McBrien NA, Clark IQ (1994) Atropine inhibition of lens-induced effects in chick: Evidence for similar mechanisms underlying form deprivation and lensinduced myopia. Invest Ophthalmol Vis Sci (ARVO Sunni) 35:2068

    Google Scholar 

  30. Schaeffel F, Bartmann M, Hagel G, et al. (1995) Studies on the role of the retinal dopamine/melatonin system in experimental refractive errors in chickens. Vision Res 35:1247–1264

    Article  PubMed  CAS  Google Scholar 

  31. Schwahn HN, Schaeffel F, Zrenner E (1996) Effects of flickering light of varying duty cycles on the refractive development of chicks. Invest Ophthalmol Vis Sci (ARVO Suppl) 37:51000

    Google Scholar 

  32. Schaeffel F, Hagel G, Bartmann M, et al. (1994) 6-hydroxydopamine does not affect lens-induced refractive errors but suppresses deprivation myopia. Vision Res 34:143–149

    Article  PubMed  CAS  Google Scholar 

  33. Rickers M, Schaeffel F (1995) Dose-dependent effects of intravitreal pirenzepine on deprivation myopia and lens-induced refractive errors in chickens. Exp Eye Res 61:509–516

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Japan

About this chapter

Cite this chapter

Wallman, J. (1998). How Is Emmetropization Controlled? Results of Research on Experimental Myopia. In: Tokoro, T. (eds) Myopia Updates. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66959-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66959-3_2

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66961-6

  • Online ISBN: 978-4-431-66959-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics