• Anatolij T. Fomenko
  • Tosiyasu L. Kinii


We consider Euclidean space ℝn and define in it the standard Euclidean scalar product
$$\langle \xi ,\eta \rangle = {\xi ^1}{\eta ^1} + \cdots + {\xi ^n}{\eta ^n}$$
for any vectors ξ and η. With each vector ξ we associate a real number, called its length and defined as
$$\left| \xi \right| = {\left\langle {\xi ,\xi } \right\rangle ^{\frac{1}{2}}}$$


Jacobian Matrix Smooth Curve Rigid Motion Plane Curf Polar Coordinate System 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Japan 1997

Authors and Affiliations

  • Anatolij T. Fomenko
    • 1
  • Tosiyasu L. Kinii
    • 2
    • 3
  1. 1.Department of Differential Geometry and Application, Faculty of Mathematics and MechanicsMoscow State UniversityMoscowRussia
  2. 2.Laboratory of Digital Art and TechnologyTokyo, 113Japan
  3. 3.Senior Partner of MONOLITH Co. LtdTokyo, 106Japan

Personalised recommendations