Skip to main content

Cytoskeletal Changes in the Calcium-Overloaded Heart

  • Chapter
New Horizons for Failing Heart Syndrome

Abstract

Calcium handling is impaired in the failing heart, causing calcium overload of the heart. Enhanced sympathetic nerve activity during heart failure could accerelate calcium overload by increasing the calcium influx. Calcium overload may also be induced in the ischemic heart, particularly after reperfusion. When intracellular Ca2+ cannot be sequestered normally, myofilaments are desensitized to Ca2+, leading to contractile dysfunction. The cytoskeleton is sensitive to intracellular Ca2+ concentration. Microtubules, which support the scaffold of cell membranes and intracellular organelles and contribute to the assembly of myofilaments, are disrupted in Ca2+-overloaded hearts and cardiomyocytes. In ischemic-reperfused hearts, several interventions that can attenuate Ca2+ influx after reperfusion (e.g., acidotic reperfusion, staged reperfusion, and low Ca2+ reperfusion) significantly attenuated microtubule disruption. Potent β3-adrenergic stimulation also disrupts microtubules of the myocardium in vitro and in vivo. Although microtubules do not directly contribute to the contractile function of the heart, microtubular disruption may cause cellular dysfunction and could be a precipitating factor for progression of heart failure. Other cytoskeletal abnormalities should be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmusen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB (1986) Betar and beta2-adrenergic receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective betarreceptor downregulation in heart failure. Circ Res 59:297–309.

    Article  PubMed  CAS  Google Scholar 

  2. Ishikawa Y, Katsushika S, Kiuchi K, Shannon RP, Komamura K, Sorota S, Vatner DE, Vatner SF, Homey DJ (1994) Downregulation of adenylylcyclase types V and VI mRNA levels in pacing-induced heart failure in dogs. J Clin Invest 93:2224–2229.

    Article  PubMed  CAS  Google Scholar 

  3. Feldman AM, Cates AE, Veazey WB, Harshberger RE, Bristow MR, Baughman KL, Baumgartner WA, Van Dop C(1988) Increase of the 40000-mol wt pertussis toxin substrate (G-protein) in the failing human heart. J Clin Invest 82:189–197.

    Article  PubMed  CAS  Google Scholar 

  4. 4.Mercadier JJ, Lompre AM, Wisnewsky C, Samuel JL, Bercovici J, Swynghedauw B, Schwartz K (1981) Myosin isoenzymic changes in several models of rat cardiac hypertrophy. Circ Res 49:525–532.

    Article  PubMed  CAS  Google Scholar 

  5. 5.Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI (1988) Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62:757–765.

    Article  PubMed  CAS  Google Scholar 

  6. Linzbach AJ (1960) Heart failure from the point of view of quantitative anatomy. Am J Cardiol 5:370–382.

    Article  PubMed  CAS  Google Scholar 

  7. Caulfield JB, Norton P, Weaver RD (1992) Cardiac dilatation associated with collagen alterations. Mol Cell Biochem 118:171–179.

    Article  PubMed  CAS  Google Scholar 

  8. Janicki JS, Matsubara BB (1993) Myocardial collagen and left ventricular diastolic function. In: Gaasch WH, LeWinter MM (eds) Left ventricular diastolic dysfunction. Lea and Febiger, Philadelphia, pp 125–140.

    Google Scholar 

  9. Weber KT, Clark WA, Janicki JS, Scroff SG (1987) Physiologic versus pathologic hypertrophy and the pressure-overloaded myocardium. J Cardiovasc Pharmacol 10:S37-S50.

    Google Scholar 

  10. Pardo JV, Siliciano JD, Craig SW (1983) Vinculin is a component of an extensive network of myofibril-sarcolemma attachment regions in cardiac muscle fibers. J Cell Biol 97:1081–1088.

    Article  PubMed  CAS  Google Scholar 

  11. 11.Jacobson BS (1983) Interaction of the plasma membrane with the cytoskeleton: an overview. Tissue Cell 15:829–852.

    Article  PubMed  CAS  Google Scholar 

  12. Bershadsky AD, Vazilliev JM (1988) Cytoskeleton. Plenum, New York.

    Book  Google Scholar 

  13. Byers HR, White GE, Fujiwara K (1984) Organization and function of stress fibers in cells in vitro and in situ. In: Shay JW (ed) Cell and muscle motility, vol 5. Plenum, New York, pp 83–137.

    Google Scholar 

  14. Burridge K (1981) Are stress fibers contractile? Nature 294:691–692.

    Article  PubMed  CAS  Google Scholar 

  15. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283:249–256.

    Article  PubMed  CAS  Google Scholar 

  16. Lazarides E, Granger BL, Gard DL, O’Connor CM, Beekler J, Price M, Danto SI (1982) Desmin- and vimentin-containing filaments and their role in the assembly of the Z disk in muscle cells. Cold Spring Harbour Symp Quant Biol 46:351–378.

    Article  Google Scholar 

  17. Osborn M, Geisler N, Shaw G, Sharp G, Weber K (1982) Intermediate filaments. Cold Spring Harbour Symp Quant Biol 42:413–429.

    Article  Google Scholar 

  18. Traub P, Nelson WJ, Kuhn S, Vorgias CE (1983) Interaction in vitro of the intermediate filament protein vimentin with naturally occurring RNAs and DNAs. J Biol Chem 258: 1456–1466.

    PubMed  CAS  Google Scholar 

  19. Jones JCR, Goldman AE, Steinert PM, Yuspa S, Goldman RD (1982) Dynamic aspects of the supramolecular organization of intermediate filament networks in cultured epidermal cells. Cell Motil 2:197–213.

    Article  PubMed  CAS  Google Scholar 

  20. Cartwright J, Goldstein MA (1985) Microtubules in the heart muscle of the postnatal and adult rat. J Mol Cell Cardiol 17:1–7.

    Article  PubMed  Google Scholar 

  21. Herdson PB, Sommers HM, Jennings RB (1965) Comparative study of the fine structure of normal and ischemic dog myocardium with special reference to early changes following temporary occlusion of a coronary artery. Am J Pathol 46:367–386.

    PubMed  CAS  Google Scholar 

  22. Jennings RB, Ganote CE (1974) Structural changes in myocardium during acute ischemia. Circ Res 34/35(suppl III):156–172.

    Google Scholar 

  23. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA (1978) Relationship between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92:187–214.

    PubMed  CAS  Google Scholar 

  24. Steenbergen C, Hill ML, Jennings RB (1985) Volume regulation and plasma membrane injury in aerobic and ischemic myocardium in vitro: effects of osmotic cell swelling on plasma membrane integrity. Circ Res 57:864–875.

    Article  PubMed  CAS  Google Scholar 

  25. Steenbergen C, Hill ML, Jennings RB (1987) Cytoskeletal damage during myocardial ischemia: changes in vinculin immunofluorescence staining during total in vitro ischemia in canine heart. Circ Res 60:478–486.

    Article  PubMed  CAS  Google Scholar 

  26. Iwai K, Hori M, Kitabatake A, Kurihara H, Uchida K, Inoue M, Kamada T (1990) Disruption of microtubules as an early sign of irreversible ischemic injury: immunohistochemical study of in situ canine hearts. Circ Res 67:694–706.

    Article  PubMed  CAS  Google Scholar 

  27. Bennet V (1992) Ankyrins: adaptor between diverse plasma membrane proteins and the cytoplasm. J Biol Chem 267:8703–8706.

    Google Scholar 

  28. Vybiral T, Winkelmann JC, Roberts R, Joe E, Casey DL, Williams JK, Epstein HF (1992) Human cardiac and skeletal mucscle spectrins: differential express and localization. Cell Motil Cytoskeleton 21:293–304.

    Article  PubMed  CAS  Google Scholar 

  29. Carlier MF, Simon C, Cassoly R, Pradel LA (1984) Interaction between microtubule-associated protein tau and spectrin. Biochimie 66:305–311

    Google Scholar 

  30. Braunwald E, Kloner RA (1982) The stunned myocardium: prolonged postischemic ventricular dysfunction. Circulation 66:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  31. Gross JG, Farber NE, Hardman HF, Warltier DC (1986) Beneficial actions of superoxide dismutase and catalase in the stunned myocardium of dogs. Am J Physiol 250: H372–H377.

    Google Scholar 

  32. Krause SM, Jacobus WE, Becker LC (1989) Alterations in cardiac sarcoplasmic reticulum transport in the postischemic “stunned” myocardium. Circ Res 65:526–530.

    Article  PubMed  CAS  Google Scholar 

  33. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E (1987) Pathophysiology and pathogenesis of stunned myocardium: depressed Ca2+ activation and contraction as a consequences of reperfusion-induced cellular overload in ferret hearts. J Clin Invest 79:950–961.

    Article  PubMed  CAS  Google Scholar 

  34. Kitakaze M, Weisman HF, Marban E (1988) Contractile dysfunction and ATP depletion after transient calcium overload in perfused ferret hearts. Circulation 77:685–695.

    Article  PubMed  CAS  Google Scholar 

  35. Deboer FWV, Ingwall JS, Kloner RA, Braunwald E (1980) Prolonged derangements of canine myocardial purine metabolism after a brief coronary artery occlusion not associated with anatomic evidence of necrosis. Proc Natl Acad Sci USA 77:5471–5475.

    Article  PubMed  CAS  Google Scholar 

  36. Greenfield RA, Sawain JL (1987) Disruption of myofibrillar energy use: dual mechanisms that may contribute to postischemic dysfunction in stunned myocardium. Circ Res 60: 283–289.

    Article  PubMed  CAS  Google Scholar 

  37. Hori M, Kitakaze M, Sato H, Takashima S, Iwakura K, Inoue M, Kitabatake A, Kamada T (1991) Staged reperfusion attenuates myocardial stunning in dogs; role of transient acidosis during early reperfusion. Circulation 84:2135–2145.

    Article  PubMed  CAS  Google Scholar 

  38. Pike MM, Kitakaze M, Marban E (1990) Sodium-23 NMR measurements of intracellular sodium in intact perfused ferret hearts during ischemia and reperfusion. Am J Physiol 259:H1767–1773.

    Google Scholar 

  39. Philipson ED, Bersohn MM, Nishimoto AY (1982) Effects of pH on Na+-Ca2+ exchange in canine cardiac sarcolemmal vesicles Circ Res 50,287–293.

    Article  PubMed  CAS  Google Scholar 

  40. Kusuoka H, Jacobus WE, Marban E (1988) Calcium oscillation in digitalis-induced ventricular fibrillation: pathogenetic role and metabolic consequences in isolated ferret hearts. Circ Res 62:609–619.

    Article  PubMed  CAS  Google Scholar 

  41. Sato H, Hori M, Kitakaze M, Iwai K, Takashima S, Kurihara H, Inoue M, Kamda T (1993) Reperfusion after brief ischemia disrupts the microtubule network in canine hearts. Circ Res 72:361–375.

    Article  PubMed  CAS  Google Scholar 

  42. Kitakaze M, Weisman HF, Marban E (1987) Contractile dysfunction and ATP depletion after transientcalci r overinad in perfused ferret 77.685–695.

    Google Scholar 

  43. Porterfield JK, Kusuoka H, Weisman HF, Weisfeldt ML, Marban E (1987) Ryanodine prevents the changes in myocardial function and morphology induced by reperfusion after brief periods of ischemia [abstract]. Clin Res 35:315.

    Google Scholar 

  44. Kitakaze M, Weisfeldt ML, Marban E (1988) Acidosis during reperfusion prevents myocardial stunning in ferret heart. J Clin Invest 82:920–927.

    Article  PubMed  CAS  Google Scholar 

  45. Zhao M, Zhang H, Robinson TF, Factor SM, Sonnenblick EH, Eng C (1987) Profound structural alterations of the extracellular matrix in postischemic dysfuntion (“stunned”) but viable myocardium. J Am Coll Cardiol 10:1322–1334.

    Article  PubMed  CAS  Google Scholar 

  46. Marcum JM, Dedman JR, Brinkley BR, Means AR (1978) Control of microtubule assembly-disassembly by calcium-dependent regulator protein. Proc Natl Acad Sci USA 75:3771–3775.

    Article  PubMed  CAS  Google Scholar 

  47. Yamamoto H, Fukunaga K, Goto S, Tanaka E, Miyamoto E (1985) Ca2+ calmodulin-dependent regulation of microtubule formation via phosphorylation of microtubule-associated protein 2, tau factor, and tubulin, and comparison with the cyclic AMP-dependent phosphorylation. J Neurochem 44:759–768.

    Article  PubMed  CAS  Google Scholar 

  48. Matsumura Y, Kusuoka H, Inoue M, Hori M, Kamada T (1993) Protective effect of the protease inhibitor leupeptin against myocardial stunning. J Cardiovasc Pharmacol 22:135–142.

    Article  PubMed  CAS  Google Scholar 

  49. Reddy MK, Etlinger JD, Rabinowitz M, Fischman DA, Zak R (1975) Removal of Z-lines and alpha-actinin from isolated myofibrils by a calcium-activated neural protease. J Biol Chem 250:4278–4284.

    PubMed  CAS  Google Scholar 

  50. Dayton WR, Goll DE, Zeece MG, Robinson RM, Reville WJ (1976) A Ca2+-activated protease possible involved in myofibrillar protein turnover: purification from porcine muscle. Biochemistry 15:2150–2158.

    Article  PubMed  CAS  Google Scholar 

  51. Carlier MF, Pantaloni D (1981) Kinetic analysis of guanosine 5′ -triphosphate hydrolysis associated with tubulin polymerization. Biochemistry 20:1918–1924.

    Article  PubMed  CAS  Google Scholar 

  52. Klein I (1983) Colchicine stimulates the rate of contraction of heart cells in culture. Cardiovasc Res 17:459–465.

    Article  PubMed  CAS  Google Scholar 

  53. Tsutsui H, Ishihara K, Cooper G IV (1993) Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 260:682–687.

    Article  PubMed  CAS  Google Scholar 

  54. Goldstein MA, Entman ML (1979) Microtubules in mammalian heart muscle. J Cell Biol 80:183–195.

    Article  PubMed  CAS  Google Scholar 

  55. Kelly RB (1990) Microtubules, membrane traffic, and cell organization. Cell 61:5–7.

    Article  PubMed  CAS  Google Scholar 

  56. Chidsey CA, Harrison DC, Braunwald E (1962) Augmentation of plasma norepinephrine response to exercise in patients with congestive heart failure. N Engl J Med 267: 650–654.

    Article  PubMed  CAS  Google Scholar 

  57. Thomas JA, Marks BH (1978) Plasma norepinephrine in congestive heart failure. Am J Cardiol 41:233–243.

    Article  PubMed  CAS  Google Scholar 

  58. Francis GS, Goldsmith SR, Ziesche S, Cohn JN (1982) Response of plasma norepinephrine and epinephrine to dynamic exercise in patients with congestive heart failure. Am J Cardiol 49:1152–1156.

    Article  PubMed  CAS  Google Scholar 

  59. Hasking GJ, Esler MD, Jennings GL, Burton D, Korner PI (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621.

    Article  PubMed  CAS  Google Scholar 

  60. Leimbach WN, Wallin BG, Victor RG, Aylward PE, Sundlof G, Mark AL (1986) Direct evidence from intraneural recordings for increased central sympathetic outflow in patients with heart failure. Circulation 73:913–919.

    Article  PubMed  Google Scholar 

  61. Golstein DS, McCarty R, Polinsky RJ, Kopin IJ (1983) Relationship between plasma norepinephrine and sympathetic neural activity. Hypertension 5:552–559.

    Article  Google Scholar 

  62. Hirsch AT, Dzau VJ, Creager MA (1987) Baroreceptor function in congestive heart failure: effect on neurohumoral activation and regional vascular resistance. Circulation 75(suppl IV):36–48.

    Google Scholar 

  63. Wang W, Chen JS, Zucker IH (1990) Carotid sinus baroreceptor sensitivity in experimental heart failure. Circulation 81:1959–1966.

    Article  PubMed  CAS  Google Scholar 

  64. Abboud FM, Thames MD, Mark AL (1981) Role of cardiac afferent nerves in the regulation of the circulation during coronary occlusion and heart failure. In: Abboud FM, Fozzard HA, Gilmore JP, Reis DJ (eds) Disturbances in neurogenic control of the circulation. American Physiological, Society, Bethesda, pp 65–86.

    Google Scholar 

  65. Christensen NJ, Galbo H (1983) Sympathetic nervous activity during exercise. Annu Rev Physiol 45:139–153.

    Article  PubMed  CAS  Google Scholar 

  66. Freud PR, Rowell LB, Murphy TM, Hobbs SF, Butler SH (1979) Blockade of the pressor response to muscle ischemia by sensor nerve block in man Am JPh siol 237:H433–H439.

    Google Scholar 

  67. Stebbins CL, Maruoka Y, Longhurst JC (1986) Prostaglandins contribute to cardiovascular reflexes evoked by static muscle contraction. Circ Res 59:645–654.

    Article  PubMed  CAS  Google Scholar 

  68. Sato H, Hori M, Kitabatake A, Inoue M (1989) Adrenergic regulation during exercise in patients with heart failure. In: Hori M, Suga H, Baan J, Yellin EL (eds) Cardiac mechanics and function in the normal and diseased heart. Springer, Berlin Heidelberg New York Tokyo, pp 325–334.

    Chapter  Google Scholar 

  69. Waagstein F, Hjalmarson A, Varnauskas E, Wallentin I (1975) Effect of chronic beta-adrenergic receptor blockade in congestive cardiomyopathy. Br Heart J. 37.1022–1036.

    Article  PubMed  CAS  Google Scholar 

  70. Waagstein F, Caidahl K, Wallentin I, Bergh CH, Hjalmarson A (1989) Long-term beta-blockade in dilated cardiomyopathy: effects of short- and long-term metoprolol treatment followed by withdrawal and readministration of metoprolol. Circulation 80: 551–563.

    Article  PubMed  CAS  Google Scholar 

  71. Yamada T, Fukunami M, Ohmori M, Iwakura K, Kumagai K, Kondoh N, Minamino T, Tsujimura E, Nagareda T, Kotoh K, Hoki N (1993) Which subpopulation of patients with dilated cardiomyopathy would benefit from long term beta-blocker therapy? A histological viewpoint. J Am Coll Cardiol 21:628–633.

    Article  PubMed  CAS  Google Scholar 

  72. Bloom S, Davis DL (1972) Calcium as mediator of isoproterenol induced myocardial necrosis. Am J Pathol 69:459–470.

    PubMed  CAS  Google Scholar 

  73. Wheatley AM, Thandroyen FT, Opie LH (1985) Catecholamine-induced myocardial cell damage: catecholamines or adrenochrome. J Mol Cell Cardiol 17:349–359.

    Article  PubMed  CAS  Google Scholar 

  74. Buja LM (1991) Lipid abnormalities in myocardial cell injury. Trends Cardiovasc Med 1:40–44.

    Article  PubMed  CAS  Google Scholar 

  75. Ganote C, Armstrong S (1993) Ischemia and the myocyte cytoskeleton: review and speculation. Cardiovasc Res 27:1387–1403.

    Article  PubMed  CAS  Google Scholar 

  76. Hori M, Sato H, Iwai K, Sato H, Inoue M, Kitabatake A, Kamada T (1992) Norepinephrine disrupts cytoskeletal framework of microtubules in rat hearts. Jpn Circ J 56:462–468.

    Article  PubMed  CAS  Google Scholar 

  77. Hori M, Sato H, Kitakaze M, Iwai K, Takeda H, Inoue M, Kamada T (1994) Beta-adrenergic stimulation disassembles microtubules in neonatal rat cultured cardiomyocytes through intracellular Ca2+ overload. Circ Res 75:324–334.

    Article  PubMed  CAS  Google Scholar 

  78. Kieth C, Dipaola M, Maxfield FR, Shelanski ML (1983) Microinjection of Ca2+-calmodulin causes a localized depolymerization of microtubules. J Cell Biol 97:1918–1974.

    Article  Google Scholar 

  79. Schliwa M, Euteneuer U, Bulinski JC, Izant JG (1981) Calcium lability of cytoplasmic microtubules and its modulation by microtubules-associated proteins. Proc Natl Acad Sci USA 78:1037–1041.

    Article  PubMed  CAS  Google Scholar 

  80. Badalamente MA, Hurst LC, Stracher A (1986) Calcium-induced degradation of the cytoskeleton in monkey and human peripheral nerves. J Hand Surg [Br] 11:337–340.

    Article  CAS  Google Scholar 

  81. Geffen LB, Ursh RA, Louis WJ, Doyle AE (1973) Plasma catecholamine and dopamine beta-hydroxylase amounts in pheochromocytoma. Clin Sci 44:421–424.

    PubMed  CAS  Google Scholar 

  82. Samuel JL, Marotte F, Delcayre C, Rappaport L (1986) Microtubule organization is related to rate of heart myocyte hypertrophy in rat. Am J Physiol 251:H1118–H1125.

    Google Scholar 

  83. Shimo-oka T, Hayashi M, Satanabe Y (1980) Tubulin-myosin interaction: some properties of biding beween tubulin and myosin. Biochemistry 21:4921–4926.

    Article  Google Scholar 

  84. Warren RH (1968) The effect of colchicine on myogenesis in vivo in Rana pipiens and Rhodnius prolixus (Hemiptera). J Cell Biol 39:544–555.

    Article  PubMed  CAS  Google Scholar 

  85. Croop JM, Holtzer H(1975) Response of fibrogenic and myogenic cells to cytochalasin B and to colcemid. I. Light microscopic observations. T Cell Biol 65:271–285.

    Article  CAS  Google Scholar 

  86. Hayashi M, Ohnishi K, Hayashi K (1980) Dense precipitate of brain tubulin with skeletal muscle myosine. J Biochem (Tokyo) 87:1347–1355.

    CAS  Google Scholar 

  87. Antin PB, Forry-Scaudies S, Friedman TM, Tapscott SJ, Holtzer H (1981) Taxol induces postmitotic myoblasts to assemble interdigitating microtubules-myosin arrays that exclude actin filaments. J Cell Biol 90:300–308.

    Article  PubMed  CAS  Google Scholar 

  88. Samuel JL, Bertier B, Bugaisky L, Marotte F, Swynghedauw B, Schwartz K, Rappaport L (1984) Different distributions of microtubules, desmin filaments and isomyosins during the onset of cardiac hypertrophy in the rat Eur J Cell Biol 34:300–306.

    CAS  Google Scholar 

  89. Schaper J, Froede R, Hein ST, Buck A, Hashizume H, Speiser B, Friedl A, Bleese N (1991) Impairment of the myocardial ultrastructure and changes of the cytoskeleton in dilated cardiomyopathy. Circulation 83:504–514.

    Article  PubMed  CAS  Google Scholar 

  90. Hori M, Sato H, Iwai K, Takashima S, Hoki N, Fukunami M, Naka M, Kurihara H, Kitabatake A, Inoue M, Kamada T (1992) Disrupted microtubule structure in the ischemic and failing myocardium. The role of calcium overload. In: Yasuda H, Kawaguchi H (eds) New aspects in the treatment of failing heart. Springer, Berlin Heidelberg New York Tokyo, pp 46–50.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Japan

About this chapter

Cite this chapter

Hori, M., Sato, H., Inoue, M. (1996). Cytoskeletal Changes in the Calcium-Overloaded Heart. In: Sasayama, S. (eds) New Horizons for Failing Heart Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66945-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66945-6_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66947-0

  • Online ISBN: 978-4-431-66945-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics