Skip to main content

Mechanisms of Novel Cardiotonic Agents Developed to Treat the Failing Heart Syndrome

  • Chapter

Abstract

Several cardiotonic drugs have been developed as potential therapeutic agents for patients with the failing heart syndrome. These agents act through different but relatively limited subcellular signal-transduction pathways. Accumulation of 3′,5′ -cyclic adenosine monophosphate (cyclic AMP) plays a main role in mediating the cardiotonic effects of most of these agents. Cyclic AMP promotes mobilization of intracellular Ca2+ in association with a decrease in myofibrillar responsiveness to Ca2+, leading to the characteristic positive inotropic and lusitropic effects of these agents. The quantitative relation between the accumulation of cyclic AMP and a positive inotropic effect, however, differs among agents that act on cyclic AMP metabolism via different mechanisms: For a given increase in contractile force, accumulation of cyclic AMP induced by selective cyclic nucleotide phosphodiesterase (PDE) III inhibitors and 31-adrenoceptor partial agonists is much less than that produced by nonselective 3-adrenoceptor agonists or nonselective PDE inhibitors (or both). The relation between the amplitude of Ca2+ transients and the positive inotropic effect differs between selective PDE III inhibitors on the one hand and the β1-adrenoceptor partial agonist denopamine on the other, suggesting intracellular compartmentation of cyclic AMP in myocardial cells. Newly developed Ca2+ sensitizers are expected to be therapeutic agents because of their benefits in cardiac energetics and the absence of potential Ca2+ overload. It became evident from motility assays, in vitro binding of Ca2+ to troponin C, and Ca2+-dependent actomyosin ATPase activity that the processes responsible for the sensitization of myofibrils to Ca2+ involve multiple sites: (1) the binding of Ca2+ to troponin C; (2) thin filament interaction involving Ca2+ regulation sites; and (3) the actin-myosin interface leading to changes in crossbridge cycling in the absence of Ca2+ . In addition, (4) the environments where myofibrils are located may play a crucial role. The therapeutic relevance of these Ca2+ sensitizers and a novel Ca2+ channel promoter awaits the outcome of clinical application of these agents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farah AE, Alousi AA (1978) New cardiotonic agents: a search for digitalis substitute. Life Sci 22:1139–1148

    Article  PubMed  CAS  Google Scholar 

  2. Farah AE, Alousi AA, Schwarz RP Jr (1984) Positive inotropic agents. Annu Rev Pharmacol Toxicol 24:275–328

    Article  PubMed  CAS  Google Scholar 

  3. Alousi AA, Farah AE, Lesher GY, Opalka CJ Jr (1979) Cardiotonic activity of amrinone— Win 40680 [5-amino 3,4’-bipyridin-6(1H)-one]. Circ Res 45:666–677

    Article  PubMed  CAS  Google Scholar 

  4. Aass H, Skomedal T, Osnes JB (1988) Increase of cyclic AMP in subcellular fractions of rat heart muscle after β-adrenergic stimulation: prenalterol and isoprenaline caused different distribution of bound cyclic AMP. J Mol Cell Cardiol 20:847–860

    Article  PubMed  CAS  Google Scholar 

  5. Endoh M, Shibasaki T, Satoh H, Norota I, Ishihata A (1991) Different mechanisms involved in the positive inotropic effects of benzimidazole derivative UD-CG 115 BS (pimobendan) and its demethylated metabolite UD-CG 212 C1 in canine ventricular myocardium. J Cardiovasc Pharmacol 17:365–375

    Article  PubMed  CAS  Google Scholar 

  6. Main BG (1982) Structure-activity relations of 3-adrenergic agents. J Chem Tech Biotechnol 32:617–626

    CAS  Google Scholar 

  7. Yokoyama H, Yanagisawa T, Taira N (1988) Details of mode and mechanism of action of denopamine, a new orally active cardiotonic agent with affinity for 31-receptors. J Cardiovasc Pharmacol 12:323–331

    Article  PubMed  CAS  Google Scholar 

  8. DiBianco R, Shabetai R, Kostuk W, Moran J, Schlant RC, Wright RA (1989) A comparison of oral milrinone, digoxin, and their combination in the treatment of patients with chronic heart failure. N Engl J Med 320:677- 683

    Article  Google Scholar 

  9. Packer M, Carver JR, Rodeheffer RJ, et al, for PROMIS Study Research Group (1991) Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med 325:1468–1475

    Article  CAS  Google Scholar 

  10. Xamoterol in Severe Heart Failure Study Group (1990) Xamoterol in severe heart failure. Lancet 336:1–6 [Erratum, Lancet (1990) 336:698]

    Article  Google Scholar 

  11. Uretskey BF, Jessup M, Konstam MA, Dec W, Leier CV, Benotti J, Murali S, Herrmann HC, Sandberg JA for the Enoximone Multicenter Trial Group (1990) Multicenter trial of oral enoximone in patients with moderate to moderately severe congestive heart failure: lack of benefit compared with placebo. Circulation 82:774–780

    Article  Google Scholar 

  12. Massie B, Bourassa M, DiBianco R, Hess M, Kostam M, Likoff M, Packer M (1985) Long-term oral administration of amrinone for congestive heart failure: lack of efficiency in a multicenter controlled trial. Circulation 71:963–971

    Article  PubMed  CAS  Google Scholar 

  13. Veterans Administration Study Group (1986) Effect of vasodilator therapy on mortality in chronic congestive heart failure. N Engl J Med 314:1547–1552

    Article  Google Scholar 

  14. CONSENSUS Trial Study Group (1987) Effect of enalapril on mortality in severe congestive heart failure. N Engl J Med 316:1429–1435

    Article  Google Scholar 

  15. Solved Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejections and congestive heart failure. N Engl J Med 325:293–302

    Article  Google Scholar 

  16. Endoh M, Yamashita S, Taira N (1982) Positive inotropic effect of amrinone in relation to cyclic nucleotide metabolism in the canine ventricular muscle. J Pharmacol Exp Ther 221:775–783

    PubMed  CAS  Google Scholar 

  17. Katano Y, Endoh M (1992) Effects of a cardiotonic quinolinone derivative Y-20487 on the isoproterenol-induced positive inotropic action and cyclic AMP accumulation in rat ventricular myocardium: comparison with rolipram, Ro 20–1724, milrinone, and isobutylmethylxanthine. J Cardiovasc Pharmacol 20:715–722

    PubMed  CAS  Google Scholar 

  18. Endoh M, Hori M (1993) Basic pharmacology and clinical application of new positive inotropic agents. Drugs Today 29:29–56

    CAS  Google Scholar 

  19. Reiter M (1988) Calcium mobilization and cardiac inotropic mechanisms. Pharmacol Rev 40:189–217

    PubMed  CAS  Google Scholar 

  20. Blinks JR, Endoh M (1986) Modification of myofibrillar responsiveness to Ca++ as an inotropic mechanism. Circulation 73(suppl III):85–98

    Google Scholar 

  21. Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, Beavo JA (1986) Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Pharmacol 29:506–514

    PubMed  CAS  Google Scholar 

  22. Weishaar RE, Burrows SD, Kobylarz DC, Quade MM, Evans DB (1986) Multiple molecular forms of cyclic nucleotide phosphodiesterase in cardiac and smooth muscle and in platelets: isolation, characterization, and effects of various reference phosphodiesterase inhibitors and cardiotonic agents. Biochem Pharmacol 35:787–800

    Article  PubMed  CAS  Google Scholar 

  23. Solaro RJ, Gambassi G, Warshaw DM, Keller MR, Spurgeon HA, Beier N, Lakatta EG (1993) Stereoselective actions of thiadiazinones on canine cardiac myocytes and myofilaments. Circ Res 73:981–990

    Article  PubMed  CAS  Google Scholar 

  24. Kawabata Y, Endoh M (1993) Effects of the positive inotropic agent Org 30029 on developed force and aequorin light transients in intact canine ventricular myocardium. Circ Res 72:597–606

    Article  PubMed  CAS  Google Scholar 

  25. Blinks JR (1993) Analysis of the effects of drugs on myofibrillar Ca2+ sensitivity in intact cardiac muscle. In: Lee JA, Allen DG (eds) Modulation of cardiac calcium sensitivity: a new approach to increasing the strength of the heart. Oxford University Press, Oxford, pp 242–282

    Google Scholar 

  26. Beavo JA, Conti M, Heaslip RJ (1994) Multiple cyclic nucleotide phosphodiesterases. Mol Pharmacol 46:399–405

    PubMed  CAS  Google Scholar 

  27. Weishaar RE, Kobylarz-Singer DC, Steffen RP, Kaplan HR (1987) Subclasses of cyclic AMP-specific phospodiesterase in left ventricular muscle and their involvement in regulating myocardial contractility. Circ Res 61:539–547

    Article  PubMed  CAS  Google Scholar 

  28. Kauffman RF, Crowe VG, Utterback BG, Robertson DW. (1986) LY195115: a potent, selective inhibitor of cyclic nucleotide phosphodiesterase located in the sarcoplasmic reticulum. Mol Pharmacol 30:609- 616

    PubMed  CAS  Google Scholar 

  29. Kauffman RF, Utterback BG, Robertson DW (1989) Specific binding of [3H]LY186126, an analogue of indolidan (LY195115), to cardiac membranes enriched in sarcoplasmic reticulum vesicles. Circ Res 64:1037–1040

    Article  PubMed  CAS  Google Scholar 

  30. Kithas PA, Artman M, Thompson WJ, Strada SJ (1988) Subcellular distribution of highaffinity type IV cyclic AMP phosphodiesterase activity in rabbit ventricular myocardium: relations to the effects of cardiotonic drugs. Circ Res 62:782–789

    Article  PubMed  CAS  Google Scholar 

  31. Silver PJ (1989) Biochemical aspects of inhibition of cardiovascular low (Km) cyclic adenosine monophosphate phosphodiesterase. Am J Cardiol 63:2A-8A

    Article  PubMed  CAS  Google Scholar 

  32. Endoh M (1993) Pharmacology of loprinone (E-1020), a new pyridinone inodilator, as a therapeutic agent for acute heart failure. Cardiovasc Drug Rev 11:432–450

    Article  Google Scholar 

  33. Endoh M, Yanagisawa T, Taira N, Blinks JR (1986) Effects of new inotropic agents on cyclic nucleotide metabolism and calcium transients in canine ventricular muscle. Circulation 73(suppl III):117–133

    Google Scholar 

  34. Gwathmey JK, Morgan JP (1985) The effects of milrinone and piroximone on intracellular calcium handling in working myocardium from the ferret. Br J Pharmacol 85:97–108

    Article  PubMed  CAS  Google Scholar 

  35. Earl CQ, Linden J, Weglicki WB (1986) Inhibition of cyclic AMP-dependent protein kinase activity by the cardiotonic drugs amrinone and milrinone. Life Sci 39:1901–1908

    Article  PubMed  CAS  Google Scholar 

  36. Rapundalo ST, Grupp I, Grupp G, Matlib MA, Solaro RJ, Schwartz A (1986) Myocardial actions of milrinone: characterization of its mechanism of action. Circulation 73(suppl III):134–144

    Google Scholar 

  37. Malecot CO, Bers DM, Katzung BG (1986) Biphasic contractions induced by milrinone at low temperature in ferret ventricular muscle: role of the sarcoplasmic reticulum and transmembrane calcium influx. Circ Res 59:151–162

    Article  PubMed  CAS  Google Scholar 

  38. Holmberg SRM, Williams AJ (1991) Phosphodiesterase inhibitors and the cardiac sarcoplasmic reticulum calcium release channel: differential effects of milrinone and enoximone. Cardiovasc Res 25:537–545

    Article  PubMed  CAS  Google Scholar 

  39. Alousi AA, Grant AM, Allen PD, Pagani ED (1988) Effects of milrinone on Ca++-sensitivity of myofibrillar Mg-adenosine triphosphatase isolated from normal human and canine hearts. J Pharmacol Exp Ther 246:30–37

    PubMed  CAS  Google Scholar 

  40. Rapundalo ST, Solaro RJ, Kranias EG (1989) Inotropic responses to isoproterenol and phosphodiesterase inhibitors in intact guinea pig hearts: comparison of cyclic AMP levels and phosphorylation of sarcoplasmic reticulum and myofibrillar proteins. Circ Res 64:104–111

    Article  PubMed  CAS  Google Scholar 

  41. Endoh M, Kawabata Y, Katano Y, Norota I (1994) Effects of a novel cardiotonic agent (± )6-[3-(3,4-dimethoxybenzylamino)-2-hydroxypropoxy] 2(1H)-quinolinone (OPC-18790) on contractile force, cyclic AMP level, and aequorin light transients in dog ventricular myocardium. J Cardiovasc Pharmacol 23:723–730

    Article  PubMed  CAS  Google Scholar 

  42. Kawabata Y, Endoh M (1995) Effects of a novel cardiotonic agent, Org 9731, on force and aequorin light transients in intact ventricular myocardium of the dog: involvement of a cyclic AMP-mediated mechanism and myofibrillar responsiveness to Ca2+ ions. J Cardiac Failure 1:143–153

    Article  CAS  Google Scholar 

  43. Endoh M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through a- and β-adrenoceptors. Circ Res 62:247–265

    Article  PubMed  CAS  Google Scholar 

  44. Kohi M, Norota I, Takanashi M, Endoh M (1993) On the mechanism of action of the beta1 partial agonist denopamine in regulation of myocardial contractility: effects on myocardial alpha adrenoceptors and intracellular Ca++ transients. J Pharmacol Exp Ther 265:1292–1300

    PubMed  CAS  Google Scholar 

  45. Honerjäger P, Heiss A, Schäfer-Korting M, Schönsteiner G, Reiter M (1984) UD-CG 115-a cardiotonic pyridinone which elevates cyclic AMP and prolongs the action potential in guinea-pig papillary muscle. Naunyn Schmiedebergs Arch Pharmacol 325:259–269

    Article  PubMed  Google Scholar 

  46. Verdouw PD, Hartog JM, Duncker DJ, Roth W, Saxena PR (1986) Cardiovascular profile of pimobendan, a benzimidazole-pyridazinone derivative with vasodilating and inotropic properties. Eur J Pharmacol 126:21–30

    Article  PubMed  CAS  Google Scholar 

  47. Duncker DJ, Hartog JM, Levinsky L, Verdouw PD (1987) Systemic haemodynamic actions of pimobendan (UD-CG 115 BS) and its O-demethylmetabolite UD-CG 212 Cl in the conscious pig. Br J Pharmacol 91:609–615

    Article  PubMed  CAS  Google Scholar 

  48. Westfall MV, Wahler GM, Fujino K, Solaro RJ (1992) Electrophysiological actions of the pimobendan metabolite, UD-CG 212 Cl, in guinea pig myocardium. J Pharmacol Exp Ther 260:58–63

    PubMed  CAS  Google Scholar 

  49. Berger C, Meyer W, Scholz H, Starbatty J (1985) Effects of the benzimidazole derivatives pimobendan and 2-(4-hydroxy-phenyl)-5-(5-methyl-3-oxo-4,5-dihydro-2H-6-pyridazinyl) benzimidazole HC1 on phosphodiesterase activity and force of contraction in guinea-pig hearts. Arzneimittelforschung 35(II):1668–1673

    PubMed  CAS  Google Scholar 

  50. Rüegg JC, Pfitzer G, Eubler D, Zeugner C (1984) Effect on contractility of skinned fibers from mammalian heart and smooth muscle by a new benzimidazole derivative, 4,5-dihydro-6- [2-(4-methoxyphenyl)-1H -benzimidazol-5-yl] -5-methyl-3(2H)-pyridazinone. Arzneimittelforschung 34(II):1736–1738

    PubMed  Google Scholar 

  51. Fujino K, Sperelakis N, Solaro RJ (1988) Sensitization of dog and guinea pig heart myofilaments to Ca24 activation and the inotropic effect of pimobendan: comparison with milrinone. Circ Res 63:911–922

    Article  PubMed  CAS  Google Scholar 

  52. Fujino K, Sperelakis N, Solaro RJ (1988) Differential effects of d- and 1-pimobendan on cardiac myofilament calcium sensitivity. J Pharmacol Exp Ther 247:519–523

    PubMed  CAS  Google Scholar 

  53. Brunkhorst D, Von der Leyen H, Meyer W, Nigbur R, Schmidt-Schumacher C, Scholz H (1989) Relation of positive inotropic and chronotropic effects of pimobendan, UD-CG 212 C1, milrinone and other phosphodiesterase inhibitors to phosphodiesterase III inhibition in guinea-pig heart. Naunyn Schmiedebergs Arch Pharmacol 339:575–583

    Article  PubMed  CAS  Google Scholar 

  54. Von der Leyen H, Mende U, Meyer W, et al (1991) Mechanism underlying the reduced positive inotropic effects of the phosphodiesterase III inhibitors pimobendan, adibendan and saterinone in failing as compared to nonfailing human cardiac muscle preparations. Naunyn Schmiedebergs Arch Pharmacol 334:90–100

    Google Scholar 

  55. Böhm M, Morano I, Pieske B, Rüegg JC, Wankerl M, Zimmermann R, Erdmann E (1991) Contribution of cAMP-phosphodiesterase inhibition and sensitization of the contractile proteins for calcium to the inotropic effect of pimobendan in the failing human myocardium. Circ Res 68:689–701

    Article  PubMed  Google Scholar 

  56. Kitada Y, Narimatsu A, Suzuki R, Endoh M, Taira N (1987) Does the positive inotropic action of a novel cardiotonic agent, MCI-154, involve mechanisms other than cyclic AMP? J Pharmacol Exp Ther 243:639–645

    PubMed  CAS  Google Scholar 

  57. Kitada Y, Narimatsu A, Matsumura N, Endo M (1987) Increase in Ca++ sensitivity of the contractile system by MCI-154, a novel cardiotonic agent, in chemically skinned fibers from the guinea pig papillary muscles. J Pharmacol Exp Ther 243:633–638

    PubMed  CAS  Google Scholar 

  58. Hosono M, Taira N (1987) Cardiac and coronary vasodilator effects of the novel cardiotonic agent, MCI-154, assessed in isolated, blood-perfused dog heart preparations. J Cardiovasc Pharmacol 10:692–698

    Article  PubMed  CAS  Google Scholar 

  59. Allert JA, Adams HR (1990) Inotropic and chronotropic profile of MCI-154: comparison with isoproterenol and imazodan in guinea pig cardiac preparations. J Cardiovasc Pharmacol 16:59–67

    Article  PubMed  CAS  Google Scholar 

  60. Warren SE, Kihara Y, Pesaturo J, Gwathmey JK, Phillips P, Morgan JP (1989) Inotropic and lusitropic effects of MCI-154 (6-[4-(4-pyridyl)aminophenyl]-4,5-dihydro-3(2H)-pyridazinone) on human myocardium. J Mol Cell Cardiol 21:1037–1045

    Article  PubMed  CAS  Google Scholar 

  61. Endoh M (1990) Characteristics of regulation of intracellular calcium mobilization and sensitivity by beta-adrenoceptor and muscarinic agonists, and a novel inotropic agent, MCI-154 in canine ventricular myocardium. In: Yamada K, Shibata S (eds) Recent advances in calcium channels and calcium-antagonists. Pergamon, New York, pp 51–59

    Google Scholar 

  62. Kitada Y, Abe Y, Narimatsu A, Tobe A (1991) MCI-154, a novel cardiotonic agent, reverses the acidic pH-induced decrease in responses of cardiac myofilaments to Ca++: comparison with sulmazole and pimobendan. J Pharmacol Exp Ther 257:812–819

    PubMed  CAS  Google Scholar 

  63. Abe Y, Kitada Y, Narimatsu A (1992) Beneficial effect of MCI-154, a cardiotonic agent, on ischemic contractile failure and myocardial acidosis of dog hearts: comparison with dobutamine, milrinone and pimobendan. J Pharmacol Exp Ther 261:1087–1095

    PubMed  CAS  Google Scholar 

  64. Narimatsu A, Kitada Y, Satoh N, Suzuki R, Okushima H (1987) Cardiovascular pharmacology of 6-[4-(4’-pyridyl)aminophenyl]-4,5-dihydro-3(2H)-pyridazinone hydrochloride, anovel and potent cardiotonic agent with vasodilator properties. Arzneimittelforschung 37:398–406

    PubMed  CAS  Google Scholar 

  65. Kitada Y, Kobayashi M, Narimatsu A, Ohizumi Y (1989) Potent stimulation of myofilament force and adenosine triphosphatase activity of canine cardiac muscle through a direct enhancement of troponin C Ca++ binding by MCI-154, a novel cardiotonic agent. J Pharmacol Exp Ther 250:272–277

    PubMed  CAS  Google Scholar 

  66. Sata M, Sugiura S, Yamashita H, Fujita H, Momomura S, Serizawa T (1995) MCI-154 increases Ca2+ sensitivity of the reconstituted thin filament: a study using a novel in vitro motility assay technique. Circ Res 76:626–633

    Article  PubMed  CAS  Google Scholar 

  67. Perreault C, Brozovich FV, Ransil Bj, Morgan JP (1989) Effects of MCI-154 on Ca2+ activation of skinned human myocardium. Eur J Pharmacol 165:305–308

    Article  PubMed  CAS  Google Scholar 

  68. Steffen RP, Eldon CM, Evans DB (1986) The effect of the cardiotonic imazodan (CI-914) on myocardial and peripheral hemodynamics in the anesthetized dog. J Cardiovasc Pharmacol 8:520–526

    Article  PubMed  CAS  Google Scholar 

  69. Hayes JS, Pollock GD, Wilson H, Bowling N, Robertson DW (1987) Pharmacology of LY 195115, a potent, orally active cardiotonic with a long duration of action. J Cardiovasc Pharmacol 9:425–434

    Article  PubMed  CAS  Google Scholar 

  70. Kauffman RF, Utterback BG, Robertson DW (1989) Characterization and pharmacological relevance of high affinity binding sites for [3H]LY186126, a cardiotonic phosphodiesterase inhibitor, in canine cardiac membranes. Circ Res 65:154–163

    Article  PubMed  CAS  Google Scholar 

  71. Taira N, Endoh M, Iijima T, Satoh K, Yanagisawa T, Yamashita S, Maruyama M, Kawada M, Morita T, Wada Y (1984) Mode and mechanism of action of 3, 4-dihydro-6-[4-(3,4-dimethoxybenzoyl)-1-piperazinyl]-2(1H)-quinolinone (OPC-8212), a novel positive inotropic drug, on the dog heart. Arzneimittelforschung 34(I):347–355

    PubMed  CAS  Google Scholar 

  72. Yanagisawa T, Endoh M, Taira N (1984) Involvement of cyclic AMP in the positive inotropic effect of OPC-8212, a new cardiotonic agent, on canine ventricular muscle. Jpn J Pharmacol 36:379–388

    Article  PubMed  CAS  Google Scholar 

  73. Hosokawa T, Mori T, Fujiki H, et al (1992) Cardiovascular actions of OPC-18790: a novel positive inotropic agent with little chronotropic action. Heart Vessels 7:66–75

    Article  PubMed  CAS  Google Scholar 

  74. Yatani A, Imoto Y, Schwartz A, Brown AM (1989) New positive inotropic agent OPC-8212 modulates single Ca2+ channels in ventricular myocytes of guinea pig. J Cardiovasc Pharmacol 13:812–819

    Article  PubMed  CAS  Google Scholar 

  75. Iijima T, Taira N (1987) Membrane current changes responsible for the positive inotropic effect of OPC-8212, a new positive inotropic agent, in single ventricular cells of the guinea pig heart. J Pharmacol Exp Ther 240:657–662

    PubMed  CAS  Google Scholar 

  76. Yanagisawa T, Ishii K, Taira N (1987) Antitachycardiac effect of OPC-8212, a novel cardiotonic agent, on tachycardiac response of guinea pig isolated right atria to isoproterenol and histamine. J Cardiovasc Pharmacol 10:47–54

    Article  PubMed  CAS  Google Scholar 

  77. Lathrop DA, Schwartz A (1985) Evidence for possible increase of sodium channel open time and involvement of Na/Ca exchange by a new positive inotropic drug: OPC-8212. Eur J Pharmacol 117:391–392

    Article  PubMed  CAS  Google Scholar 

  78. Rapundalo ST, Lathrop DA, Harrison SA, Beavo JA, Schwartz A (1988) Cyclic AMPdependent and cyclic AMP-independent actions of a novel cardiotonic agent, OPC-8212. Naunyn Schmiedebergs Arch Pharmacol 338:692–698

    Article  PubMed  CAS  Google Scholar 

  79. Asanoi H, Sasayama S, Iuchi K, Kameyama T (1987) Acute hemodynamic effects of a new inotropic agent (OPC-8212) in patients with congestive heart failure. J Am Coll Cardiol 9:865–871

    Article  PubMed  CAS  Google Scholar 

  80. Inoue M, Hori M, Yasuda H, Takishima T, Sugimoto T, Sasayama S, Sakurai T, Nonogi H, Kodama K, Kusukawa R, Nakamura M, Kawai C (1987) A multicenter study of a new inotropic agent, piperanometozine (OPC-8212) in congestive heart failure: clinical improvement during short-term treatment. Cardiovasc Drugs Ther 1:169–175

    Article  PubMed  CAS  Google Scholar 

  81. OPC-8212 Multicenter Research Group (1990) A placebo-controlled, randomized, doubleblind study of OPC-8212 in patients with mild chronic heart failure. Cardiovasc Drugs Ther 4:419–426

    Article  Google Scholar 

  82. Feldman AM, Bristow MR, Parmley WW, et al (1993) Effects of vesnarinone on morbidity and mortality in patients with heart failure. N Engl J Med 328:149–155

    Article  Google Scholar 

  83. Shioi T, Matsumori A, Matsui S, Sasayama S (1994) Inhibition of cytokine production by a new inotropic agent, vesnarinone, in human lymphocytes, T cell line, and monocytic cell line. Life Sci 54:11–16

    Article  Google Scholar 

  84. Hedberg A, Carlsson E, Fellenius E, Lundgren B (1982) Cardiostimulatory effects of prenalterol, a beta-1 adrenoceptor partial agonist, in vivo and in vitro: correlation between physiological effects and adenylate cyclase activity. Naunyn Schmiedebergs Arch Pharmacol 318:185–191

    Article  PubMed  CAS  Google Scholar 

  85. Nuttall A, Snow HM (1982) The cardiovascular effects of ICI 118,587: a 31-adrenoceptor partial agonist. Br J Pharmacol 77:381–388

    Article  PubMed  CAS  Google Scholar 

  86. Inamasu M, Totsuka T, Ikeo T, Nagao T, Takayama S (1987) Beta1-adrenergic selectivity of the new cardiotonic agent denopamine in its stimulating effects on adenylate cyclase. Biochem Pharmacol 36:1947–1954

    Article  PubMed  CAS  Google Scholar 

  87. Sasaki Y, Yabana H, Nagao T, Takayama S (1988) Effect of denopamine on the phosphorylation of cardiac muscle proteins in the perfused guinea-pig heart. Biochem Pharmacol 37:679–686

    Article  PubMed  CAS  Google Scholar 

  88. Reithmann C, Wieland F, Jakobs KH, Werdan K (1989) Intrinsic sympathomimetic activity of beta-adrenoceptor antagonists: down-regulation of cardiac beta1- and beta2adrenoceptors. Eur J Pharmacol 170:243–255

    Article  PubMed  CAS  Google Scholar 

  89. Yabana H, Naito K, Nagao T (1986) Effect of chronic administration of denopamine (TA064), a new positive inotropic agent, on cardiac response of rats to denopamine. Jpn J Pharmacol 42:87–97

    Article  PubMed  CAS  Google Scholar 

  90. Barnett DB, Lu X (1991) Cardiac beta-adrenoceptor regulation and the effects of partial agonism. Am J Cardiol 67:18C-19C

    Article  PubMed  CAS  Google Scholar 

  91. Kenakin TP, Ferris RM (1983) Effects of in vivo beta-adrenoceptor down-regulation on cardiac responses to prenalterol and pirbuterol. J Cardiovasc Pharmacol 5:90–97

    Article  PubMed  CAS  Google Scholar 

  92. Bristow MR, Ginsburg R, Umans V, et al (1986) Beta1- and beta2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta1-receptor down-regulation in heart failure. Circ Res 59:297–309

    Article  PubMed  CAS  Google Scholar 

  93. Brodde OE (1991) Beta1- and beta2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    PubMed  CAS  Google Scholar 

  94. Moore PF, Constantine JW, Barth WE (1978) Pirbuterol, a selective beta2-adrenergic bronchodilator. J Pharmacol Exp Ther 207:410–418

    PubMed  CAS  Google Scholar 

  95. Brown RA, Dixon J, Farmer JB, et al (1985) Dopexamine: a novel agonist at peripheral dopamine receptors and beta2 adrenoceptors. Br J Pharmacol 85:599–608

    Article  PubMed  CAS  Google Scholar 

  96. Kusuoka H, Weisfeld ML, Zweier JL, Jacobus WE, Marban E (1986) Mechanism of early contractile failure during hypoxia in intact ferret heart: evidence for modulation of maximal Ca2+-activated force by inorganic phosphate. Circ Res 59:270–282

    Article  PubMed  CAS  Google Scholar 

  97. Allen DG, Orchard CH (1987) Myocardial contractile function during ischaemia and hypoxia. Circ Res 60:153–168

    Article  PubMed  CAS  Google Scholar 

  98. Allen DG, Orchard CH (1983) The effect of changes in pH on intracellular calcium transients in mammalian cardiac muscle. J Physiol (Lond) 335:555–567

    CAS  Google Scholar 

  99. Kentish JC (1986) The effect of inorganic phosphate and creatine phosphate on force production in skinned muscles from rat ventricle. J Physiol (Lond) 370:585–604

    CAS  Google Scholar 

  100. Harrison SM, Bers DM (1990) Temperature-dependence of myofilament Ca sensitivity of rat, guinea pig and frog ventricular muscle. Am J Physiol 258:C274-C281

    PubMed  CAS  Google Scholar 

  101. Endoh M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through a- and 3-adrenoceptors. Circ Res 62:247–265

    Article  PubMed  CAS  Google Scholar 

  102. Okazaki O, Suda N, Hongo K, Konishi M, Kurihara S (1990) Modulation of ca2+ transients and contractile properties by 3-adrenoceptor stimulation in ferret ventricular muscles. J Physiol (Lond) 423:221–240

    CAS  Google Scholar 

  103. Sata M, Sugiura S, Yamashita H, Momomura S, Serizawa T (1993) Dynamic interaction between cardiac myosin isoforms modifies velocity of actomyosin sliding in vitro. Circ Res 73:696–704

    Article  PubMed  CAS  Google Scholar 

  104. Honda H, Asakura S (1989) Calcium-triggered movement of regulated actin in vitro: a fluorescence microscopy study. J Mol Biol 205:677–683

    Article  PubMed  CAS  Google Scholar 

  105. Wendt IR, Stephenson DG (1983) Effects of caffeine on Ca-activated force production in skinned cardiac and skeletal muscle fibers of the rat. Pflugers Arch 398:210–216

    Article  PubMed  CAS  Google Scholar 

  106. Endoh M (1994) The effects of theophylline on aequorin light transients and force in the isolated dog right ventricular myocardium. J Mol Cell Cardiol 26:87–98

    Article  PubMed  CAS  Google Scholar 

  107. Fabiato A, Fabiato F (1976) Techniques of skinned cardiac cells and of isolated cardiac fibers with disrupted sarcolemmas with reference to the effects of catecholamines and of caffeine. In: Roy PE, Dhalla NS (eds) Recent advances in studies on cardiac structure and metabolism. Vol 9: The sarcolemma. University Park Press, Baltimore, pp 71–94

    Google Scholar 

  108. Herzig JW, Feile K, Rüegg JC (1981) Activating effects of AR-L 115 BS on the Ca2+ sensitive force, stiffness and unloaded shortening velocity (Vmax) in isolated contractile structures from mammalian heart muscle. Arzneimittelforschung 31(I): 188–191

    PubMed  CAS  Google Scholar 

  109. Solaro RJ, Rüegg JC (1982) Stimulation of Ca++ binding and ATPase activity of dog cardiac myofibrils by AR-L 115 BS, a novel cardiotonic agent. Circ Res 51:290–294

    Article  PubMed  CAS  Google Scholar 

  110. Endoh M, Yanagisawa T, Morita T, Taira N (1985) Differential effects of sulmazole (AR-L 115 BS) on contractile force and cyclic AMP levels in canine ventricular muscle: comparison with MDL 17,043. J Pharmacol Exp Ther 234:267–273

    PubMed  CAS  Google Scholar 

  111. Gross T, Lues I, Daut J (1993) A new cardiotonic drug reduces the energy cost of active tension in cardiac muscle. J Mol Cell Cardiol 25:239–244

    Article  PubMed  CAS  Google Scholar 

  112. Lee JA, Allen DG (1991) EMD 53998 sensitizes the contractile proteins to calcium in intact ferret ventricular muscle. Circ Res 69:927–936

    Article  PubMed  CAS  Google Scholar 

  113. Gambassi G, Capogrossi MC, Klockow M, Lakatta EG (1993) Enantiomeric dissection of the effects of the inotropic agent, EMD 53998, in single cardiac myocytes. Am J Physiol 264: H728-H738

    PubMed  CAS  Google Scholar 

  114. White J, Lee JA, Shah N, Orchard CH (1993) Differential effects of the optical isomers of EMD 53998 on contraction and cytoplasmic Ca2+ in isolated ferret cardiac muscle. Circ Res 73:61–70

    Article  PubMed  CAS  Google Scholar 

  115. Lee JA, Shah N, White J, Orchard CH (1993) A novel thiadiazinone derivative fully reverses acidosis-induced depression of force in cardiac muscle by a calcium-sensitizing effect. Clin Sci 84:141–144

    PubMed  CAS  Google Scholar 

  116. Strauss JD, Zeugmer C, Rüegg JC (1992) The positive inotropic calcium sensitizer EMD 53998 antagonizes phosphate action on cross-bridges in cardiac skinned fibers. Eur J Pharmacol 227:437–441

    Article  PubMed  CAS  Google Scholar 

  117. Wang JX, Flemal K, Qiu Z, Ablin L, Grossman W, Morgan JP (1994) Ca2+ handling and myofibrillar Ca2+ sensitivity in ferret cardiac myocytes with pressure-overload hypertrophy. Am J Physiol 267: H918-H924

    PubMed  CAS  Google Scholar 

  118. Schwinger RHG, Böhm M, Koch A, Schmidt U, Morano I, Eissner HJ, Uberfuhr P, Reichart B, Erdmann E (1994) The failing human heart is unable to use the Frank-Starling mechanism. Circ Res 74:959–969

    Article  PubMed  CAS  Google Scholar 

  119. Matsumori A, Shioi T, Yamada T, Matsui S, Sasayama S (1994) Vesnarinone, a new inotropic agent, inhibits cytokine production by stimulated human blood from patients with heart failure. Circulation 89:955–958

    Article  PubMed  CAS  Google Scholar 

  120. Saeki Y, Sagawa K, Suga H (1978) Dynamic stiffness of cat heart muscle in Ba2+ contracture. Circ Res 42:324–333

    Article  PubMed  CAS  Google Scholar 

  121. Hongo K, Tanaka E, Kurihara S (1993) Alterations in contractile properties and Ca2+ transients by 3- and muscarinic receptor stimulation in ferret myocardium. J Physiol (Lond) 461:167–184 122. Suga H (1990) Ventricular energetics. Physiol Rev 70:247–277

    Google Scholar 

  122. Holubarsch C, Hasenfuss G, Just H, Blanchard EM, Mulieri LA, Alpert NR (1990) Modulation of myothermal economy of isometric force generation by positive inotropic interventions in the guinea pig myocardium. Cardioscience 1:33–41

    PubMed  CAS  Google Scholar 

  123. Holubarsch C, Hasenfuss G, Just H, Alpert NR (1994) Positive inotropism and myocardial energetics: influence of β3 receptor agonist stimulation, phosphodiesterase inhibition, and ouabain. Cardiovasc Res 28:994–1002

    Article  PubMed  CAS  Google Scholar 

  124. Schramm M, Thomas G, Towart R, Franckowiak G (1983) Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature 303:535–537

    Article  PubMed  CAS  Google Scholar 

  125. Bechem M, Hebisch S, Schramm M (1988) Ca2+ agonists: new sensitive probes for Ca2+ channels. Trends Pharmacol Sci 9:257–261

    Article  CAS  Google Scholar 

  126. Dembowsky K, Bechem M, Goldmann S, Gross R, Hebisch S, Hütter J, Rounding P, Schramm M, Stoltefuss J, Straub A (1994) The calcium promotor BAY y 5959 increases cardiac contractility without an oxygen wasting effect in vitro as well as in vivo. Circulation 90:I-483

    Google Scholar 

  127. Rounding P, Bechem M, Goldmann S, Gross R, Hebisch S, Hütter J, Schramm M, Stoltefuss J, Straub A (1994) BAY y 5959 prevents myocardial stunning in the anesthetized dog. Circulation 90:1–645

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Japan

About this chapter

Cite this chapter

Endoh, M. (1996). Mechanisms of Novel Cardiotonic Agents Developed to Treat the Failing Heart Syndrome. In: Sasayama, S. (eds) New Horizons for Failing Heart Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66945-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66945-6_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66947-0

  • Online ISBN: 978-4-431-66945-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics