Skip to main content

Molecular Aspects of Mechanical Stress-Induced Cardiac Hypertrophy and Failure

  • Chapter
Book cover New Horizons for Failing Heart Syndrome

Abstract

Studies have demonstrated that hypertensive left ventricular hypertrophy (LVH) simultaneously exhibits physiological and pathological aspects, suggesting that LVH is not a simple adaptation to an increased external load. Many investigators have extensively studied the activation of a novel program of gene expression in the heart induced by pressure overload (i.e., the transient induction of immediate early genes and the reexpression of fetal-type genes of both contractile and noncontractile proteins), which has been shown to be important as an adaptation to maintain cardiac function. Using an in vitro model system of mechanical stress-induced cardiac hypertrophy, we have demonstrated that the external stimuli imposed on cardiomyocytes are transduced into the nucleus through activation of the protein kinase cascade of phosphorylation: passive stretch of cultured cardiomyocytes stimulates the activation of protein kinase C, which leads to the successive phosphorylation of the mitogenactivated protein (MAP) kinase cascade including MAP kinase kinase kinase, MAP kinase, kinase, MAP kinase, and S6 kinase. Furthermore, we have demonstrated that the endogenous angiotensin II (Ang II) partially mediates mechanical stretch-induced cardiomyocyte hypertrophy, indicating that the cardiac tissue renin-angiotensin system plays an important role in the formation of hypertensive LVH. The precise mechanisms by which the sustained increase in external load leads to the impairment of cardiac function remain unclear, although impairment of diastolic function has been detected during the early stage of load-induced hypertrophy when there is no sign of reduced contractility. Using an in vivo model of hypertensive LVH, we noted previously that the depressed function of sarcoplasmic reticulum and the accumulation of interstitial collagen fibers may be responsible for the impaired diastolic function in stressed hearts. Here we review recent work on mechanical stress-induced cardiac hypertrophy and failure, especially bringing into focus the molecular mechanisms by which external load induces cellular hypertrophy of cardiac myocytes and impairment of the diastolic properties of the myocardium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Morgan H, Gordon E, Kita Y, Chua B, Russo L, Peterson C, McDermott P, Watson P (1987) Biochemical mechanisms of cardiac hypertrophy. Annu Rev Physiol 49:533–543.

    Article  PubMed  CAS  Google Scholar 

  2. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham heart study. N Engl J Med 322:1561–1566.

    Article  PubMed  CAS  Google Scholar 

  3. Zark R (ed.) (1984) Factors controlling cardiac growth: growth of the heart in health and disease. Raven, New York, 165 -185.

    Google Scholar 

  4. Cooper G, Kent R, Uboh C, Thompson E, Marino T (1985) Hemodynamic versus adrenergic control of cat right ventricular hypertrophy. J Clin Invest 75:1403 -1414.

    Article  PubMed  CAS  Google Scholar 

  5. Kira Y, Kochel P, Gordon E, Morgan H (1984) Aortic perfusion pressure as a determinant of cardiac protein synthesis. J Physiol (Lond) 246:C247-C258.

    Google Scholar 

  6. Komuro I, Kaida T, Shibazaki Y, Kurabayashi F, Takaku F, Yazaki Y (1990) Stretching cardiac myocytes stimulates proto-oncogene expression. J Biol Chem 265:3595 -3598.

    PubMed  CAS  Google Scholar 

  7. Komuro I, Katoh Y, Kaida T, Shibasaki Y, Kurabayashi M, Takaku F, Yazaki Y (1991) Mechanical loading stimulates cell hypertrophy and specific gene expression in cultured rat cardiac myocytes. J Biol Chem 266:1265- 1268.

    PubMed  CAS  Google Scholar 

  8. Mann DL, Kent RL, Cooper G (1989) Load regulation of the properties of adult feline cardiocvtes: growth induction by cellular deformation. Circ Res 64:1079–1090.

    Article  PubMed  CAS  Google Scholar 

  9. Grossman W, Mclaurin LP (1976) Diastolic proterties of the left ventricle. Ann Intern Med 84:316–326.

    PubMed  CAS  Google Scholar 

  10. Gwathmey JK, Morgan JP (1985) Altered calcium handling in experimental pressureoverload hypertrophy in the ferret. Circ Res 57:836–847.

    Article  PubMed  CAS  Google Scholar 

  11. Jalil JE, Doering CW, Janicki JS, Shroff SG, Weber KT (1989) Fibrillar collagen and myocardial stiffness in the intact hypertrophied rat left ventricle. Circ Res 64:1041–1050.

    Article  PubMed  CAS  Google Scholar 

  12. Komuro I, Yazaki Y (1993) Control of cardiac gene expression by mechanical stress. Annu Rev Physiol 55:55–75.

    Article  PubMed  CAS  Google Scholar 

  13. Greenberg ME, Greene LA, Ziff EB (1985) Nerve growth factor and epidermal growth factor induce rapid transient changes in protooncogene transcription in PC 12 cells. J Biol Chem 260:14101–14110.

    PubMed  CAS  Google Scholar 

  14. Komuro I, Shibazaki Y, Kurabayashi M, Takaku F, Yazaki Y (1990) Molecular cloning of gene sequences from rat heart rapidly responsive to pressure overload. Circ Res 66:979 - 985.

    Article  PubMed  CAS  Google Scholar 

  15. Boheler KR, Dillman WH (1988) Cardiac response to pressure overload in the rat: the selective alteration of in vitro directed RNA translation products. Circ Res 63:448–456.

    Article  PubMed  CAS  Google Scholar 

  16. Castellucci VF, Kennedy TE, Kandel ER, Goelet P (1988) A quantitative analysis of 2-D gels identifies proteins in which labeling is increased following long-term sensitization in Aplysia. Neuron 1:321- 328.

    Article  PubMed  CAS  Google Scholar 

  17. Izumo S, Nadal-Ginard B, Mandavi V (1988) Proto-oncogene induction and reprogramming of cardiac gene expression produced by pressure overload. Proc Natl Acad Sci USA 85:339–343.

    Article  PubMed  CAS  Google Scholar 

  18. Komuro I, Kurabayashi M, Takaku F, Yazaki Y (1988) Expression of cellular oncogenes in the myocardium during the developmental stage and pressure overload hypertrophy of the rat heart. Circ Res 62:1075- 1079.

    Article  PubMed  CAS  Google Scholar 

  19. Mulvagh SL, Michael LH, Perryman MB, Roberts R, Schneider MD (1987) A hemodynamic load in vivo induces cardiac expression of the cellular oncogene, c-myc. Biochem Biophys Res Commun 147:627–636.

    Article  PubMed  CAS  Google Scholar 

  20. Bauters C, Moalic JM, Bercovici J, Mouas C, Emanoil Ravier R, Schaffino S, Swynghedauw B (1988) Coronary flow as a determinant of c-myc and c-fos proto-oncogene expression in an isolated adult rat heart. J Mol Cell Cardiol 20:97–101.

    Article  PubMed  CAS  Google Scholar 

  21. Schunkert H, Jahn L, Izumo S, Apstein CS, Lorell BH (1992) Localization and regulation of c-fos and c-jun protooncogene induction by systolic wall stress in normal and hypertrophied rat hearts. Proc Natl Acad Sci USA 88:11480–11484.

    Article  Google Scholar 

  22. Breitbert RE, Andreadis A, Nadal-Ginard B (1987) Alternative splicing: a ubiquitous mechanism for the generation of multiple protein isoforms from single genes. Annu Rev Biochem 56:467–495.

    Article  Google Scholar 

  23. Swynghedauw B(1986) Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles. Physiol Rev 66:710- 771.

    PubMed  CAS  Google Scholar 

  24. Izumo S, Lompre A-M, Matuoka R, Koren G, Schwartx K, Nadal-Ginard B, Mandavi V (1987) Myosin heavy chain messenger RNA and protein isoform transitions during cardiac hypertrophy. J Clin Invest 79:970–977.

    Article  PubMed  CAS  Google Scholar 

  25. Black FM, Parker TG, Michael LH, Roberts R, Schwartz RJ, Schneider MD (1991) The vascular smooth muscle a-actin gene is reactivated during cardiac hypertrophy provoked by load. J Clin Invest 88:1581–1588.

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz K, de la Bastie D, Bouveret P, Oliviero P, Alonso S, Buckingham M(1986) a-Skeletal muscle actin mRNAs accumulate in hypertrophied adult rat hearts. Circ Res 59:551- 555.

    Article  PubMed  CAS  Google Scholar 

  27. Alpert NR, Mulieri LA (1982) Increased myothermal economy of isometric force generation in compensated cardiac hypertrophy induced by pulmonary artery constriction in the rabbit: a characterization of heat liberation in normal and hypertrophied right ventricular papillary muscles. Circ Res 50:491–500.

    Article  PubMed  CAS  Google Scholar 

  28. Lompre A-M, Schwartz K, D’Albis A, Lacombe G, Thiem NV (1979) Myosin isoenzyme distribution in chronic heart overload. Nature 282:105–107.

    Article  PubMed  CAS  Google Scholar 

  29. Day ML, Schwartz D, Wiegand RC, Stockman PT, Brunnert SR, Tolunay HE, Currie MG, Standaert DG, Needleman P (1987) Ventricular atriopeptin: unmasking of messenger RNA and peptide synthesis by hypertrophy or dexamethasone. Hypertension 9:485–491.

    Article  PubMed  CAS  Google Scholar 

  30. Lattion AL, Michel JB, Arnauld E, Corvol P, Soubrier F (1986) Myocardial recruitment during ANF mRNA, increase with volume overload in the rat. Am J Physiol 251:H890–H896.

    Google Scholar 

  31. Gardner DG, Gertz BJ, Hane S (1987) Thyroid hormone increases rat atrial natriuretic peptide messenger ribonucleic acid accumulation in vivo and in vitro. Mol Endocrinol 1:260–265.

    Article  PubMed  CAS  Google Scholar 

  32. La Pointe MC, Deschepper CF, Wu J, Gardner DG (1990) Extracellular calcium regulates expression of the gene for atrial natriuretic factor. Hypertension 15:20–28.

    Article  Google Scholar 

  33. Kovacic-Milivojevic B, Gardner DG (1992) Divergent regulation of the human atrial natriuretic peptide gene by c-fos and c-jun. Mol Cell Biol 12:292–301.

    PubMed  CAS  Google Scholar 

  34. Komuro I, Kurabayashi M, Shibazaki Y, Takaku F, Yazaki Y (1989) Molecular cloning and characterization of a Ca2+ + Mg2+-dependent adenosine triphosphatase from rat cardiac sarcoplasmic reticulum. J Clin Invest 83:1102 -1108.

    Article  PubMed  CAS  Google Scholar 

  35. Nagai R, Zarain-Herzberg A, Brandl CJ, Fujii J, Tada M (1989) Regulation of myocardial Ca2+ -ATPase and phospholamban mRNA expression in response to pressure overload and thyroid hormone. Proc Natl Acad Sci USA 86:2966–2970.

    Article  PubMed  CAS  Google Scholar 

  36. Mercadier JJ, Lompre AM, Cuc P, Boheler KR, Fraysse JB (1990) Altered sarcoplasmic reticulum Ca2+ -ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 85:305 -309.

    Article  PubMed  CAS  Google Scholar 

  37. Parker T, Schneider M (1991) Growth factors, protooncogenes, and plasticity of the cardiac phenotype. Annu Rev Physiol 53:179–200.

    Article  PubMed  CAS  Google Scholar 

  38. Zak R (1973) Cell proliferation during cardiac growth. Am J Cardiol 31:211–219.

    Article  PubMed  CAS  Google Scholar 

  39. Chien KR, Knowlton KU, Zhu H, Chien S (1991) Regulation of cardiac gene expression during myocardial growth and hypertrophy: molecular studies of an adaptive physiologic response. FASEB J 5:3037–3046.

    PubMed  CAS  Google Scholar 

  40. Margan HE, Baker KM (1991) Cardiac hypertrophy; mechanical, neural, and endocrine dependence. Circulation 83:13–25.

    Article  Google Scholar 

  41. Simpson P, Savion, S (1982) Differentiation of rat myocytes in single cell cultures with and without proliferating non-myocardial cells. Circ Res 50:101–116.

    Article  PubMed  CAS  Google Scholar 

  42. Peterson MB, Lesch M (1972) Protein synthesis and amino acid transport in isolated rabbit right ventricular muscle. Circ Res 31:317–327.

    Article  PubMed  CAS  Google Scholar 

  43. Takala T (1981) Protein synthesis in the isolated perfused rat heart: effects of mechanical workload, diastolic ventricular pressure, and coronary flow on amino acid incorporation and its transmural distribution into left ventricular protein. Basic Res Cardiol 76:44 - 61.

    Article  PubMed  CAS  Google Scholar 

  44. Sadoshima J, Izumo S (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/ paracrine mechanism. EMBO J 12:1681–1692.

    PubMed  CAS  Google Scholar 

  45. Ohmori H (1985) Mechano-electrical transduction currents in isolated vestibular hair cells of the chick. J Physiol (Lond) 359:189–217.

    CAS  Google Scholar 

  46. Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    Article  PubMed  CAS  Google Scholar 

  47. Kariya K, Karns LR, Simpson PC (1991) Expression of a constitutively activated mutant of the β-isozyme of protein kinase C in cardiac myocytes stimulates the promoter of the β-myosin heavy chain isogene. J Biol Chem 266:10023–10026

    PubMed  CAS  Google Scholar 

  48. Cantley L, Auger K, Carpenter C, Duckworth B, Graziani A, Kapeller R, Soltoff S(1991) Oncogenes and signal transduction. Cell 64:281–302.

    Article  PubMed  CAS  Google Scholar 

  49. Sturgill TW, Ray LB, Erickson E, Maller JL(1988) Insulin-stimulated MAP-2 kinase phosphorylates and activates ribosomal protein S6 kinase II. Nature 334:715 - 718.

    Article  PubMed  CAS  Google Scholar 

  50. Tobe K, Kadowaki T, Tamemoto H, Ueki K, Hara K, Koshio O, Momomura K, Gotoh Y, Nishida E, Akanuma Y, Yazaki Y, Kasuga M (1991) Insulin and 12–0-tetradecanoylphorbol-13-acetate activation of two immunologically distinct myelin basic protein/ microtubule-associated protein 2 (MBP/MAP2) kinases via de novo phosphorylation of threonine and tyrosine residues. J Biol Chem 266:24793–24803.

    PubMed  CAS  Google Scholar 

  51. Boulton TG, Nye SH, Robbins DJ, Nancy YI, Radziejewska E, Morgenbesser SD, DePinho RA, Panayotatos N, Cobb MII, Yancopoulos GD (1991) ERKs: a family of protein-serine/ threonine kinases that are activated and tyrosine phosphorylated in response to insulin and NGF. Cell 65:663–675.

    Article  PubMed  CAS  Google Scholar 

  52. Yamazaki T, Tobe K, Hoh E, Maemura K, Kaida T, Komuro I, Tamemoto H, Kadowaki T, Nagai R, Yazaki Y (1993) Mechanical loading activates mitogen-activated protein kinase and S6 peptide kinase in cultured rat cardiac myocytes. J Biol Chem 268:12069 -12076.

    PubMed  CAS  Google Scholar 

  53. Gomez N, Cohen P (1991) Dissection of the protein kinase cascade by which nerve growth factor activates MAP kinases. Nature 353:170–173.

    Article  PubMed  CAS  Google Scholar 

  54. Ahn NG, Seger R, Bratlien RL, Diltz CD, Tonks NK, Krebs EG (1991) Multiple components in an EGF-stimulated protein kinase cascade: in vitro activation of a MBP/MAP2 kinase. J Biol Chem 266:4220–4227.

    PubMed  CAS  Google Scholar 

  55. Matsuda S, Kosako H, Takenaka K, Moriyama K, Sakai H, Akiyama T, Gotoh Y, Nishida E (1992) Xenopus MAP kinase activator: identification and function as a key intermediate in the phosphorylation cascade. EMBO J 11:973–982.

    PubMed  CAS  Google Scholar 

  56. Nishida E, Gotoh Y (1993) The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci 18:128–131.

    Article  PubMed  CAS  Google Scholar 

  57. Zheng CF, Guan KL (1994) Activation of MEK family kinase requires phosphorylation of two conserved Ser/Thr residues. EMBO J 13:1123–1131.

    PubMed  CAS  Google Scholar 

  58. Kyriakis JM, App H, Zhang X, Banerjee P, Brautigan DL, Rapp UR, Avruch J (1992) Raf-1 activates MAP kinase-kinase. Nature 358:417–421.

    Article  PubMed  CAS  Google Scholar 

  59. Lange-Carter CA, Pleiman AM, Blumer KJ, Johnson GL (1993) A divergence in the MAP kinase regulatory network defined by MEK kinase and Raf. Science 260:315–319.

    Article  PubMed  CAS  Google Scholar 

  60. Wood KW, Sarnecki C, Roberts TM, Blenis J (1992) Ras mediates nerve growth factor receptor modulation of three signal-transducing protein kinases: MAP kinase, Raf-1 and RSK. Cell 68:1041–1050.

    Article  PubMed  CAS  Google Scholar 

  61. Davis DJ (1993) The mitogen-activated protein kinase signal transduction pathway. J Biol Chem 268:14553–14556.

    PubMed  CAS  Google Scholar 

  62. Ward GE, Kirschner MW (1990) Identification of cell cycle-regulated phosphorylation sites on nuclear lamin C. Cell 61:561–577.

    Article  PubMed  CAS  Google Scholar 

  63. Haccard O, Sarcevic B, Lewellin A, Hartley R, Roy L, Izumi T, Erikson E, Maller JL (1993) Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase Science 262:1262 -1265.

    Article  PubMed  CAS  Google Scholar 

  64. Pages G, Lenormand P, L’allemain G, Chambard JC, Meloche S, Pouyssegur J (1993) Mitogen-activated protein kinases p42maPk and p44maPk are required for fibroblast proliferation. Proc Natl Acad Sci USA 90:8319–8323.

    Article  PubMed  CAS  Google Scholar 

  65. Cowley S, Paterson H, Kemp, Marshall PCJ (1994) Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.

    Article  PubMed  CAS  Google Scholar 

  66. Thorburn J, Frost JA, Thorburn A (1994) Mitogen-activated protein kinases mediate changes in gene expression, but not cytoskeletal organization associated with cardiac muscle cell hypertrophy. J Cell Biol 126:1565–1572.

    Article  PubMed  CAS  Google Scholar 

  67. Morris C (1990) Mechanosensitive ion channels. I Membr Biol 113:93–107.

    Article  CAS  Google Scholar 

  68. Kent R, Hoober K, Cooper G (1989) Load responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx. Circ Res 64:74- 85.

    Article  PubMed  CAS  Google Scholar 

  69. Sigurdson W, Ruknudin A, Sachs F (1992) Calcium imaging of mechanically induced fluxes in tissue-cultured chick heart: role of stretch-activated ion channels. Am J Physiol 262:H1110-H1115.

    Google Scholar 

  70. Komuro I, Katoh Y, Hoh E, Takaku F, Yazaki Y (1991) Mechanisms of cardiac hypertrophy and injury: possible role of protein kinase C activation. Jpn Circ J 55:1149–1157.

    Article  PubMed  CAS  Google Scholar 

  71. Sadoshima J, Takahashi T, Jahn L, Izumo S (1992) Role of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci USA 89:9905–9909.

    Article  PubMed  CAS  Google Scholar 

  72. Hansen D, Borganelli M, Stacy G, Taylor L (1991) Dose-dependent inhibition of stretchinduced arrhythmias by gadolinium in isolated canine ventricles: evidence for a unique mode of antiarrhythmic action. Circ Res 69:820–831.

    Article  PubMed  CAS  Google Scholar 

  73. Juliano R, Haskill S (1993) Signal transduction from the extracellular matrix. J Cell Biol 120:577–585.

    Article  PubMed  CAS  Google Scholar 

  74. Hynes R (1992) Integrins: versatility, modulation and signaling in cell adhesion. Cell 69:11- 25.

    Article  PubMed  CAS  Google Scholar 

  75. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127.

    Article  PubMed  CAS  Google Scholar 

  76. Hammond GL, Wieben E, Market CL (1979) Molecular signals for initiating protein synthesis in organ hypertrophy. Proc Natl Acad Sci USA 76:2455–2459.

    Article  PubMed  CAS  Google Scholar 

  77. Ito H, Hirata Y, Hiroe M, Tsujino M, Adachi S, Takamoto T, Nitta M, Taniguchi K, Marumo F (1991) Endothelin-1 induces hypertrophy with enhanced expression of muscle-specific genes in cultured neonatal rat cardiac myocytes. Circ Res 69:209–215.

    Article  PubMed  CAS  Google Scholar 

  78. Ito H, Hirata Y, Adachi S, Tanaka M, Tsujino M, Koike A, Nogami A, Marumo F, Hiroe M (1993) Endothelin-1 is an autocrine/paracrine factor in the mechanism of angiotensin IIinduced hypertrophy in cultured rat cardiac myocytes. J Clin Invest 92:398–403.

    Article  PubMed  CAS  Google Scholar 

  79. Ito H, Hiroe M, Hirata Y, Fujisaki H, Adachi S, Akimoto H, Ohta Y, Marumo F (1994) Endothelin ETA receptor antagonist blocks cardiac hypertrophy provoked by hemodynamic overload. Circulation 89:2198–2203.

    Article  PubMed  CAS  Google Scholar 

  80. Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. Am J Physiol 259:H610- H618.

    Google Scholar 

  81. Katoh Y, Komuro I, Shibasaki Y, Yamaguchi H, Yazaki Y (1989) Angiotensin II induces hypertrophy and oncogene expression in cultured cardiac myocytes. Circulation 80(suppl II):450.

    Google Scholar 

  82. Sadoshima J, Izumo S (1993) Molecular characterization of angiotensin II-induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts: critical role of the AT1 receptor subtype. Circ Res 73:424–438

    Article  PubMed  CAS  Google Scholar 

  83. Sen S(1983) Regression of cardiac hypertrophy: experimental animal model. Am J Med 75(suppl 6A):87–93.

    Article  PubMed  CAS  Google Scholar 

  84. Sen S, Tarazi RC, Bupus FM (1983) Effect of converting enzyme inhibitor (SQ 14 225) on myocardial hypertrophy in spontaneously hypertensive rats. Hypertension 2:169–176.

    Article  Google Scholar 

  85. Pfeffer JM, Pfeffer MA, Mirsky I, Braunwald E (1983) Prevention of the development of heart failure and the regression of cardiac hypertrophy by captopril in the spontaneously hypertensive rats. Eur Heart J 4:143 -148.

    Article  PubMed  CAS  Google Scholar 

  86. Dunn FG, Oigman W, Ventura HO, Messeri FH, Kobrin I, Frohlich ED (1984) Enalapril improves systemic and renal hemodynamics and allows regression of left ventricular mass in essential hypertension. Am J Cardiol 53:105–108.

    Article  PubMed  CAS  Google Scholar 

  87. Nakashima Y, Fouad FM, Tarazi RC (1984) Regression of left ventricular hypertrophy from systemic hypertension by enalapril. Am J Cardiol 53:1044–1049.

    Article  PubMed  CAS  Google Scholar 

  88. Garavaglia GE, Messeri FH, Nunez BD, Schmieder RE, Frohlich ED(1988) Immediate and short-term cardiovascular effects of a new converting enzyme inhibitor (lisinopril) in essential hypertension. Am J Cardiol 62:912 -916

    Article  PubMed  CAS  Google Scholar 

  89. Scholkens BA, Linz W, Martorana PA (1991) Experimental cardiovascular benefits of angiotensin-converting enzyme inhibitors: beyond the blood pressure. J Cardiovasc Pharmacol 18(suppl II ):26 -30.

    Google Scholar 

  90. Dzau VJ (1988) Cardiac renin-angiotensin system: molecular and functional aspects. Am J Med 84(suppl 3A):22–27.

    Article  PubMed  CAS  Google Scholar 

  91. Lindpaintner K, Ganten D (1991) The cardiac renin-angiotensin system: an appraisal of present experimental and clinical evidence. Circ Res 68:905–921.

    Article  PubMed  CAS  Google Scholar 

  92. Mizuno K, Tani M, Hashimoto S, Niimura S, Sanada H, Watanabe H, Ohtsuki M, Fukuchi S (1992) Effects of losartan, a nonpeptide angiotensin II receptor antagonist, on cardiac hypertrophy and tissure angiotensin II content in spontaneously hypertensive rats. Life Sci 51:367 - 374.

    Article  PubMed  CAS  Google Scholar 

  93. Baker KM, Chernin MI, Wixson SK, Aceto JF (1990) Renin-angiotensin system involvement in pressure-overload cardiac hypertrophy in rats. Am J Physiol 259:H324–H332.

    Google Scholar 

  94. Schunkert H, Dzau VJ, Tang SS, Hirsch AT, Apstein CS, Lorell BH (1990) Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy: effect on coronary resistance, contractility, and relaxation. J Clin Invest 86:1913–1920.

    Article  PubMed  CAS  Google Scholar 

  95. Noda M, Shibouta Y, Inada Y, Ojima M, Wada T, Sanada T, Kubo K, Kohara Y, Naka T, Nishimawa K (1993) Inhibition of rabbit aortic angiotensin II (AII) receptor by CV-11974, a new nonpeptide AII antagonist. Biochem Pharmacol 46:311–318.

    Article  PubMed  CAS  Google Scholar 

  96. Kojima M, Shiojima I, Yamazaki T, Komuro I, Zou Y, Wang Y, Mizuno T, Ueki K, Tobe K, Kadowaki T, Nagai R, Yazaki Y (1994) Angiotensin II receptor antagonist TCV-116 induces regression of hypertensive left ventricular hypertrophy in vivo and inhibits the intracellular signaling pathway of stretch-mediated cardiomyocyte hypertrophy in vitro. Circulation 89:2204–2211.

    Article  PubMed  CAS  Google Scholar 

  97. Childs TJ, Adams MA, Mak AS (1990) Regression of cardiac hypertrophy in spontaneously hypertensive rats by enalapril and the expression of contractile proteins. Hypertension 16:662–668.

    Article  PubMed  CAS  Google Scholar 

  98. Brilla CG, Janicki JS, Weber KT (1991) Cardioprotective effects of lisinopril in rats with genetic hypertension and left ventricular hypertrophy. Circulation 83:1771–1779.

    Article  PubMed  CAS  Google Scholar 

  99. Sadoshima J, Xu Y, Slayter HS, Izumo S (1993) Autocrine release of angiotensin II mediates stretch-induced hypertrophy of cardiac myocytes in vitro. Cell 75:977–984.

    Article  PubMed  CAS  Google Scholar 

  100. Komuro I, Yazaki Y (1994) Intracellular signaling pathways in cardiac myocytes induced by mechanical stress. Trends Cardiovasc Med 4:117–121.

    Article  PubMed  CAS  Google Scholar 

  101. Tada M, Yamamoto T, Tonomura Y (1978) Molecular mechanism of active transport by sarcoplasmic reticulum. Physiol Rev 58:1- 79.

    PubMed  CAS  Google Scholar 

  102. MacLennan DH, Holland PC (1975) Calcium transport in sarcoplasmic reticulum. Annu Rev Biophvs Bioeng 4:377–404.

    Article  CAS  Google Scholar 

  103. Suko J, Vogel JHK, Chidsey CA (1970) Intracellular calcium and myocardial contractility. III. Reduced calcium uptake and ATPase of sarcoplasmin reticulum fraction prepared from chronically failing calf hearts. Circ Res 27:235.

    Article  PubMed  CAS  Google Scholar 

  104. Sordahl LA, McCollum WB, Wood WG, Schwartz A (1973) Mitochondria and sarcoplasmic reticulum function in cardiac hypertrophy and failure. Am J Physiol 224:497–502.

    PubMed  CAS  Google Scholar 

  105. Tada M, Katz AM (1982) Phosphorylation of the sarcoplasmic reticulum and sarcolemma. Annu Rev Phvsiol 44:401–423.

    Article  CAS  Google Scholar 

  106. Caulfield TB, Borg TK (1979) The collagen network of the heart. Lab Invest 40:364–372.

    PubMed  CAS  Google Scholar 

  107. Caspari PG, Newcomb M, Gibson K, Harris P (1977) Collagen in the normal and hypertrophied human ventricle. Cardiovas Res 11:554 -558.

    Article  CAS  Google Scholar 

  108. Anderson KR, St John Sutton MG, Lie JT (1979) Histopathological types of cardiac fibrosis in myocardial disease. J Pathol 128:79–85.

    Article  PubMed  CAS  Google Scholar 

  109. Pearlman ES, Weber KT, Janicki JS, Pietra G, Fishman AP (1982) Muscle fiber orientation and connective tissue content in the hypertrophied human heart. Lab Invest 46:158–164.

    PubMed  CAS  Google Scholar 

  110. Shiojima I, Komuro I, Yamazaki T, Nagai R, Yazaki Y(1994) Molecular aspects of the control of myocardial relaxation: diastolic relaxation of the heart. In: Lorell BH, Grossman W (eds) Diastolic relaxation of the heart. Kluwer, Boston, pp. 25–32.

    Chapter  Google Scholar 

  111. Medugorac I, Jacob R(1983) Characterization of left ventricular collagen in the rat. Cardiovasc Res 17:15 -21.

    Article  PubMed  CAS  Google Scholar 

  112. Villarreal FJ, Dillmann WH (1992) Cardiac hypertrophy-induced changes in mRNA levels for TGF-β1, fibronectin and collagen. Am J Physiol 262:H1861- H1866.

    Google Scholar 

  113. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI (1988) Collagen remodeling of the pressure-overloaded hypertrophied nonhuman primate myocardium. Circ Res 62:757 - 765.

    Article  PubMed  CAS  Google Scholar 

  114. Ignotz RA, Massageu J (1986) Transforming growth factor-β stimulates the expression of fibronectin and collagen and their incorporation into the extracellular matrix. J Biol Chem 261:4337–4345.

    PubMed  CAS  Google Scholar 

  115. Sporn MB, Roberts AB, Wakefield LM, de-Crombrugghe B (1987) Some recent advances in the chemistry and biology of transforming growth factor-beta. J Cell Biol 105:1039–1045

    Article  PubMed  CAS  Google Scholar 

  116. Kato H, Suzuki H, Tajima S, Ogata Y, Tominaga T, Sato A, Saruta T. Angiotensin II stimulates collagen synthesis in cultured vascular smooth muscle cells. J Hyperten 9: 17–22.

    Google Scholar 

  117. Eghbali M, Czaja MJ, Zeyclel M, Weiner FR, Zern MA, Seifter S, Blumenfeld 00 (1988) Collagen chain mRNAs in isolated heart cells from young and adult rats. J Moll Cell Cardiol 20:267–276.

    Article  CAS  Google Scholar 

  118. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT (1990) Remodeling of the rat right and left ventricles in experimental hypertension. Circ Res 67:1355–1364.

    Article  PubMed  CAS  Google Scholar 

  119. Yao J, Eghbali M (1992) Decreased collagen gene expression and absence of fibrosis in thyroid hormone-induced myocardial hypertrophy: response of cardiac fibroblasts to thyroid hormone in vitro. Circ Res 71:831–839.

    Article  PubMed  CAS  Google Scholar 

  120. Carver W, Nagpal ML, Nachtigal M, Borg KT, Terracio L (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69:116–122.

    Article  PubMed  CAS  Google Scholar 

  121. Traverse S, Gomez N, Paterson H, Marshall C, Cohen P (1992) Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells: comparison of the effects of nerve growth factor and epidermal growth factor. Biochem J 288(Pt 2):351–355.

    PubMed  CAS  Google Scholar 

  122. Nguyen TT, Scimeca JC, Filloux C, Peraldi P, Carpentier JL, Van Obberghen E(1993) Coregulation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1, and the 90-kDa ribosomal S6 kinase in PC12 cells: distinct effects of the neurotrophic factor, nerve growth factor, and the mitogenic factor, epidermal growth factor. J Biol Chem 268:9803 - 9810.

    PubMed  CAS  Google Scholar 

  123. Peraldi P, Scimera JC, Filloux C, Van Obberghen E (1993) Regulation of extracellular signal-regulated protein kinase 1 (ERK-1 or p44/mitogen-activated protein kinase) by epidermal growth factor and nerve growth factor in PC12 cells: implication of ERK1 inhibitory activities. Endocrinology 132:2578–2585.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Japan

About this chapter

Cite this chapter

Shiojima, I., Yamazaki, T., Komuro, I., Nagai, R., Yazaki, Y. (1996). Molecular Aspects of Mechanical Stress-Induced Cardiac Hypertrophy and Failure. In: Sasayama, S. (eds) New Horizons for Failing Heart Syndrome. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66945-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66945-6_1

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66947-0

  • Online ISBN: 978-4-431-66945-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics