Skip to main content

Morphological Changes and Stress Redistribution in Osteoporotic Spine

  • Conference paper
Spinal Disorders in Growth and Aging

Abstract

Osteoporosis is characterized by a reduction in trabecular bone mass that results in vertebral fracture when increased stresses secondary to bone loss exceed the breaking strength of the vertebra. Non-uniform trabecular loss and adaptive changes in the cortical shell or bony endplate may compensate for, or accentuate, the mechanical effects of trabecular loss. Finite element techniques can be used to improve the diagnostic assessment of vertebral fracture risk in osteoporosis by examining relationships among the trabecular bone, cortical shell, and bony endplate. This paper reviews evidence for the contributions of the vertebral cortical shell, endplate, and posterior elements to the strength and fracture resistance of the vertebral body. It also presents a 3D finite element model of a lumbar motion segment that is used to calculate stress distributions in normal and osteoporotic vertebrae with variations in trabecular density, cortical shell thickness, and endplate thickness. The finite element modeling shows that the cortical shell takes 39% of the total axial load in normal vertebrae, while the posterior elements share 27%, and the trabeculae share 34%. With a 50% loss of trabecular mass, trabeculae share only 9% of the load, while cortical shell and posterior element contributions increase to 59% and 32%, respectively. A loss of bone in the vertebral body shifts loads to the posterior elements. These load shifts in osteoporotic vertebrae increase stresses on the cortical shell by 266% when two-thirds of the trabecular bone has been lost. If both trabecular and cortical bone are lost, cortical shell stresses quadruple. The maximum cortical stress occurred in the superior and anterolateral regions of the vertebral body, consistent with observations of wedge fractures in osteoporotic women. Loss of trabecular density or reduced cortical shell thickness can increase endplate stress more than seven times, significantly increasing the risk of endplate failure. Cortical thinning alone, without loss of trabecular mass or reduced endplate thickness will not reduce axial rigidity of the whole vertebra significantly, but will increase cortical bone stresses significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Parfitt AM, Duncan H (1982) Metabolic bone disease affecting the spine. In: Rothman R, Simeone F (eds) The spine. W.B. Saunders, Philadelphia, pp 775–905

    Google Scholar 

  2. Aaron JE, Makins NB, Sagreiya K (1987) The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop 215:260–271

    PubMed  Google Scholar 

  3. Mosekilde L (1988) Age-related changes in vertebral trabecular bone architecture— assessed by a new method. Bone 9:247–250

    Article  PubMed  CAS  Google Scholar 

  4. Mosekilde L (1989) Sex differences in age-related loss of vertebral trabecular bone mass and structure—biomechanical consequences. Bone 10:425–432

    Article  PubMed  CAS  Google Scholar 

  5. Mellish RWE, Garrahan NJ, Compston JE (1989) Age-related changes in trabecular width and spacing in human iliac crest biopsies. Bone Miner 6:331–338

    Article  PubMed  CAS  Google Scholar 

  6. Parfitt AM (1992) Implications of architecture of the pathogenesis and prevention of vertebral fracture. 13:S41-S47

    Google Scholar 

  7. McBroom RJ, Hayes WC, Edwards WT, Goldberg RP, White AA III (1985) Prediction of vertebral body compressive fracture using quantitative computed tomography. J Bone Joint Surg 67A: 1206–1214

    Google Scholar 

  8. O’Keefe D (1991) Morphometry. Radiol Clin N Am 29:165–174

    Google Scholar 

  9. Brassow F, Crone-Munzebrock W, Weh L, Kranz R, Eggers-Stroeder G (1982) Correlations between breaking load and CT absorption values of vertebral bodies. Eur J Radiol 2:99–101

    PubMed  CAS  Google Scholar 

  10. Brinckman P, Biggemann M, Hilweg D (1984) Prediction of the compressive strength of human lumbar vertebrae. Clin Biomech 4:S1-S27

    Google Scholar 

  11. Mosekilde L, Bentzen SM, Ortoft G, Jorgensen J (1989) The predictive value of quantitative computed tomography for vertebral body compressive strength and ash density. Bone 10:465–470

    Article  PubMed  CAS  Google Scholar 

  12. Block JE, Smith R, Blueer C-C, Steiger P, Ettinger B, Genant HK (1989) Model of spinal trabecular bone loss as determined by quantitative computed tomography. J Bone Miner Res 4:249–257

    Article  PubMed  CAS  Google Scholar 

  13. Bell GH, Dunbar O, Beck JS, Gibb A (1967) Variations in strength of vertebrae with age and their relation to osteoporosis. Calcif Tissue Res 1:75–86

    Article  PubMed  CAS  Google Scholar 

  14. Hansson T, Roos B, Nachemson A (1980) The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine 5:46–55

    Article  PubMed  CAS  Google Scholar 

  15. Mosekilde L, Kragstrup J, Richards A (1987) Compressive strength, ash weight, and volume of vertebral trabecular bone in experimental fluorosis in pigs. Calcif Tissue Int 40:318–322

    Article  PubMed  CAS  Google Scholar 

  16. Ericksson SAV, Isberg BO, Lindgren JU (1989) Prediction of vertebral strength by dual photon absorptiometry and quantitative computed tomography. Calcif Tissue Int 44:243–250

    Article  Google Scholar 

  17. Kanis JA, McCloskey EV (1992) Epidemiology of vertebral osteoporosis. Bone 13.-S1–S10

    PubMed  Google Scholar 

  18. Recker RR, Smith RT, Kimmel DB (1992) Loss of trabecular connectivity in osteoporosis demonstrated with independent methods. Presented at the 6th International Congress on Bone Morphometry, Lexington KY, October

    Google Scholar 

  19. Ott SM, Kilcoyne RF, Chesnut CH III (1988) Comparisons among methods of measuring bone mass and relationship to severity of vertebral fractures in osteoporosis. J Clin Endocrinol Metab 66:501–507

    Article  PubMed  CAS  Google Scholar 

  20. Beck TJ, Ruff CS, Warden KE, Scott WW Jr, Rao GU (1990) Predicting femoral neck strength from bone mineral data. A structural approach. Invest Radiol 25:6–18

    Article  PubMed  CAS  Google Scholar 

  21. Yoshikawa T, Turner CH, Markwardt P, Burr DB (1992) Cross-sectional moment of inertia of the femoral neck measured using DEXA. J Bone Miner Res 7:S135

    Google Scholar 

  22. Mazess RB (1990) Fracture risk: A role for compact bone. Calcif Tissue Int 47:191–193

    Article  PubMed  CAS  Google Scholar 

  23. Ross PD, Wasnich RD, Heilbrun LK, Vogel JM (1987) Definition of a spine fracture threshold based upon prospective fracture risk. Bone 8:271–278

    Article  PubMed  CAS  Google Scholar 

  24. Odvina CV, Wergedal JE, Libanati CR, Schulz EE, Baylink DJ (1988) Relationship between trabecular vertebral body density and fractures: A quantitative definition of spinal osteoporosis. Metabolism 37:221–228

    Article  PubMed  CAS  Google Scholar 

  25. Kanis JA, McCloskey EV, Eyres KS, O’Doherty D, Aaron J (1990) Screening techniques in the evaluation of osteoporosis. In: Drift JO, Studd JWW (eds) HRT and osteoporosis. Springer, Berlin Heidelberg New York, pp 135–147

    Chapter  Google Scholar 

  26. Kulak R, Belytschko T, Schultz A, Galante J (1976) Nonlinear behavior of the human intervertebral disc under axial load. J Biomech 9:377–386

    Article  PubMed  CAS  Google Scholar 

  27. Shirazi-Adl SA, Shrivastava SC, Ahmed AM (1984) Stress analysis of lumbar disk-body unit in compression. Spine 9:120–134

    Article  PubMed  CAS  Google Scholar 

  28. Yang KH, King AI (1984) Mechanism of facet load transmission as a hypothesis of low back pain. Spine 9:557–565

    Article  PubMed  CAS  Google Scholar 

  29. King AI, Yang KH (1985) Biomechanics of the lumbar spine. In: Schmid-Schonbein G, Woo S, Zweifach B (eds) Frontiers in applied mechanics and biomechanics. Springer, Berlin Heidelberg New York, pp 210–214

    Google Scholar 

  30. Spilker RL, Jacobs DM, Schultz AB (1986) Material constants for a finite element model of the intervertebral disk with a fiber composite annulus. J Biomech Eng 108:1–11

    Article  PubMed  CAS  Google Scholar 

  31. Ueno K, Liu YK (1987) A three-dimensional nonlinear finite element model of lumbar intervertebral joint in torsion. J Biomech Eng 109:200–209

    Article  PubMed  CAS  Google Scholar 

  32. Natali A, Meroi E (1990) Nonlinear analysis of intervertebral disk under dynamic load. J Biomech Eng 112:358–363

    Article  PubMed  CAS  Google Scholar 

  33. Sharma M, Rodriguez J, Largrana N (1991) Effect of the wedge angle on lumbar intervertebral discs under compressive load. In: Vanderby (ed), 1991 Advances in Bioengineering, American Society of Mechanical Engineers, New York, pp 133–136

    Google Scholar 

  34. Kasra M, Shirazi-Adl A, Drouin G (1992) Dynamics of human lumbar intervertebral joints—experimental and finite element investigations. Spine 17:93–102

    Article  PubMed  CAS  Google Scholar 

  35. Wainwright SA, Biggs WD, Currey JD, Gosline JM (1982) Mechanical design in organisms. University Press, Princeton, NJ

    Google Scholar 

  36. Allen WC, Piotrowski G, Burstein AH, Frankel VH (1968) Biomechanical principles of intramedullary fixation. Clin Orthop 60:13–20

    PubMed  CAS  Google Scholar 

  37. Martin RB, Atkinson PJ (1977) Age and sex-related changes in the structure and strength of the human femoral shaft. J Biomech 10:223–231

    Article  PubMed  CAS  Google Scholar 

  38. Ericksen MF (1978) Aging in the lumbar spine. III. L5. Am J Phys Anthropol 48:247–250

    Article  PubMed  CAS  Google Scholar 

  39. Pesch HJ, Scharf HP, Lauer G, Seibold H (1980) Der altersabhängige Verbundabbau der Lendenwirbelkörper. Virch Arch Pathol Anat Histol 386:21–41

    Article  CAS  Google Scholar 

  40. Mosekilde L, Mosekilde L (1986) Normal vertebral body size and compressive strength: Relations to age and to vertebral and iliac trabecular bone compressive strength. Bone 7:207–212

    Article  PubMed  CAS  Google Scholar 

  41. Britton JM, Davie MWJ (1990) Mechanical properties of bone from iliac crest and relationship to L5 vertebral bone. Bone 11:21–28

    Article  PubMed  CAS  Google Scholar 

  42. Evans FG (1957) Stress and strain in bones. CC Thomas, Springfield, IL

    Google Scholar 

  43. Bartley MH Jr, Arnold JS, Haslan RK, Jee WSS (1966) The relationship of bone strength and bone quantity in health, disease, and aging. J Geront 21:517–521

    Article  PubMed  Google Scholar 

  44. Rockoff SD, Sweet E, Bleustein J (1969) The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 3:163–175

    Article  PubMed  CAS  Google Scholar 

  45. Kalender WA, Felsenberg D, Louis O, Lopez P, Klotz E, Osteaux M, Fraga J (1989) Reference values for trabecular and cortical vertebral bone density in single-and dual-energy quantitative computed tomography. Eur J Radiol 9:75–80

    PubMed  CAS  Google Scholar 

  46. Vesterby A, Mosekilde L, Gunderson HJG, Meisen F, Mosekilde L, Holme K, Sorensen S (1991) Biologically meaningful determinants of the in vitro strength of lumbar vertebrae. Bone 12:219–224

    Article  PubMed  CAS  Google Scholar 

  47. Pacifici R, Rupich RC, Avioli LV (1990) Vertebral cortical bone mass measurement by a new quantitative computer tomography method: Correlations with vertebral trabecular bone measurements. Calcif Tissue Int 47:215–220

    Article  PubMed  CAS  Google Scholar 

  48. Yoganandan N, Myklebust JB, Cusick JF, Wilson CR, Sances A Jr (1988) Functional biomechanics of the thoracolumbar vertebral cortex. Clin Biomech 3:11–18

    Article  Google Scholar 

  49. Johnson LC (1964) Morphologic analysis in pathology: The kinetics of disease and general biology in bone. In: Frost HM (ed) Bone biodynamics. Little and Brown, Boston, pp 543–654

    Google Scholar 

  50. Weissberger MA, Zamenhof RG, Aronow S, Neer RM (1978) Computed tomography scanning for the measurement of bone mineral in the human spine. J Comput Assist Tomogr 2:253–262

    Article  PubMed  CAS  Google Scholar 

  51. Eastell R, Mosekilde L, Hodgson SF, Riggs BL (1990) Proportion of human vertebral body bone that is cancellous. J Bone Miner Res 5:1237–1241

    Article  PubMed  CAS  Google Scholar 

  52. Mazess RB (1983) Noninvasive methods for quantitating trabecular bone. In: Avioli LV (ed) The osteoporotic syndrome: detection, prevention, and treatment. Grune and Stratton, New York, pp 85–114

    Google Scholar 

  53. Wahner HW, Dunn WL, Offord KP, Riggs BL (1983) Dual photon absorptiometry: Clinical considerations. In: Frame B, Potts JT (eds) Clinical disorders of bone and mineral metabolism. Excerpta Medica, Amsterdam, pp 34–38

    Google Scholar 

  54. Nottestad SV, Baumel JJ, Kimmel DB, Recker RR, Heaney RP (1987) The proportion of trabecular bone in human vertebrae. J Bone Miner Res 2:221–229

    Article  PubMed  CAS  Google Scholar 

  55. Jones CD, Laval-Jeantet A-M, Laval-Jeantet MH, Genant HK (1987) Importance of measurement of spongious vertebral bone mineral density in the assessment of osteoporosis. Bone 8:201–206

    Article  PubMed  CAS  Google Scholar 

  56. Van Berkum FNR, Birkenhager JC, Van Veen LCP, Seelenberg J, Birkenhager-Frankel DH, Trouerback WT, Stinen T, Pols HAP (1989) Noninvasive axial and peripheral assessment of bone mineral content: A comparison between osteoporotic women and normal subjects. J Bone Miner Res 4:679–685

    Article  PubMed  Google Scholar 

  57. Sandor T, Felsenberg D, Kalender WA, Clain A, Brown E (1992) Compact and trabecular components of the spine using quantitative computed tomography. Calcif Tissue Int 50:502–506

    Article  PubMed  CAS  Google Scholar 

  58. Cann CE, Genant HK, Kolb FO, Ettinger B (1985) Quantitative computed tomography for prediction of vertebral fracture risk. Bone 6:1–7

    Article  PubMed  CAS  Google Scholar 

  59. Mazess RB (1982) On aging bone loss. Clin Orthop 165:239–252

    PubMed  Google Scholar 

  60. Pacifici R, Susman N, Carr PL, Birge SJ, Avioli LV (1987) Single and dual energy tomographic analysis of spinal trabecular bone: A comparative study in normal and osteoporotic women. J Clin Endocrinol Metab 64:209–214

    Article  PubMed  CAS  Google Scholar 

  61. Smith DM, Khairi MRA, Johnston CC (1975) The loss of bone mineral with aging and its relationship to risk of fracture. J Clin’ïnvest 56:311–318

    Article  CAS  Google Scholar 

  62. Vesterby A, Ullerup R, Kristensen BI, Meisen F (1991) Cortical bone: A major determinant for fracture risk in vertebral osteoporosis. J Bone Miner Res 12:S274

    Google Scholar 

  63. Faulkner KG, Cann CE, Hasegawa BH (1991) Effect of bone distribution on vertebral strength: Assessment with patient-specific nonlinear finite element analysis. Radiology 179:669–674

    PubMed  CAS  Google Scholar 

  64. Riggs BL, Hodgson SF, O’Fallon WM, Chao EYS, Wahner HW, Muhs JM, Cedel SL, Melton LJ III (1990) Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. New Engl J Med 322:802–809

    Article  PubMed  CAS  Google Scholar 

  65. Kleerekoper M, Peterson EL, Nelson DA, Phillips E, Schork MA, Tilley BC, Parfitt AM (1991) A randomized trial of sodium fluoride as a treatment for postmenopausal osteoporosis. Osteoporosis Int 1:155–161

    Article  CAS  Google Scholar 

  66. Prasad P, King AI (1974) An experimentally validated dynamic model of the spine. J Appl Mech 41:546–550

    Article  Google Scholar 

  67. Prasad P, King AI, Ewing CL (1974) The role of articular facets during +GZ acceleration. J Appl Mech 41:321–326

    Article  Google Scholar 

  68. Hakim NS, King, AI (1979) A three dimensional finite element dynamic response analysis of a vertebra with experimental verification. J Biomech 12:277–292

    Article  PubMed  CAS  Google Scholar 

  69. Ranu HS (1990) A vertebral finite element model and its response to loading. Med Prog Tech 16:189–199

    CAS  Google Scholar 

  70. Sandor T, Felsenberg D, Kalender WA, Brown E (1990) Global and regional variations in the spinal trabecular bone: Single and dual energy examinations. J Clin Endocrinol Metab 72:1157–1168

    Article  Google Scholar 

  71. Edwards WT, McBroom RC, Hayes, WC, Goldberg R, White AA III (1986) Variation of density in the vertebral body measured by quantitative computed tomography. Trans ORS 11:205

    Google Scholar 

  72. Yang KH, Sofranko R, Burr DB (1988) Stress redistribution of osteoporotic spine. In: Spilker RL, Simon BR (eds) Computational methods in bioengineering. ASME, New York, pp 427–436

    Google Scholar 

  73. Hansson T, Keller TS, Spengler DM (1987) Mechanical behavior of the human lumbar spine. II. Fatigue strength during dynamic compressive loading. J Orthop Res 5:479–487

    Article  PubMed  CAS  Google Scholar 

  74. Granhed H, Jonson R, Hansson T (1989) Mineral content and strength of lumbar vertebrae: A cadaver study. Acta Orthop Scand 60:105–109

    Article  PubMed  CAS  Google Scholar 

  75. Lin HS, Liu YK, Ray G, Nikravesh PE (1978) Systems identification for material properties of a lumoar intervertebral joint. J Biomech 11:1–14

    Article  PubMed  Google Scholar 

  76. Yoganandan N (1986) Biomechanical identification of injury to an intervertebral joint. Clin Biomech 3:149

    Article  Google Scholar 

  77. Rolander SD, Blair WE (1975) Deformation and fracture of the lumbar vertebral end plate. Orthop Clin N Am 6:75–81

    CAS  Google Scholar 

  78. Coventry MB, Ghormley RK, Kernohan JW (1945) The intervertebral disc: Its microscopic anatomy and pathology. Part III. Pathological changes in the intervertebral disc. J Bone Joint Surg 27A:460–474

    Google Scholar 

  79. Horst M, Brinckmann P (1981) Measurement of the distribution of axial stress on the end-plate of the vertebral body. Spine 6:217–232

    Article  PubMed  CAS  Google Scholar 

  80. Hansson T, Roos B (1981) The relation between bone mineral content, experimental compression fractures and disc degeneration in lumbar vertebrae. Spine 6:147–153

    Article  PubMed  CAS  Google Scholar 

  81. Nachemson A (1960) Lumbar intradiscal pressure. Acta Orthop Scand (Suppl) 43:1–104

    CAS  Google Scholar 

  82. Nachemson A (1963) The influence of spinal movements on the lumbar intradiscal pressure and on the tensile stress in annulus fibrosus. Acta Orthop Scand 33:183–207

    Article  PubMed  CAS  Google Scholar 

  83. Adams MA, Hutton WC (1980) The effect of posture on the role of the apophysial joints in resisting intervertebral compressive forces. J Bone Joint Surg 62B:358–362

    Google Scholar 

  84. Buchanan JR, Myers C, Greer RB, Lloyd T, Varano LA (1987) Assessment of the risk of vertebral fracture in menopausal women. J Bone Joint Surg 69A:212–218

    Google Scholar 

  85. Yamada J (1970) Strength of biological materials. Williams and Wilkins, Baltimore

    Google Scholar 

  86. McElhaney JH (1966) Dynamic response of bone and muscle tissue. J Appl Physiol 21:1231–1236

    PubMed  CAS  Google Scholar 

  87. Wu HC, Rao RF (1976) Mechanical behavior of the human annulus fibrosus. J Biomech 9:1–7

    Article  PubMed  CAS  Google Scholar 

  88. Carter DR, Hayes WC (1977) The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg 59A:954–962

    Google Scholar 

  89. Schultz AB, Andersson GBJ (1981) Analysis of loads on the lumbar spine. Spine 6:76–82

    Article  PubMed  CAS  Google Scholar 

  90. Rolander SD (1966) Motion of the lumbar spine with special reference to the stabilizing effect of posterior fusion. Acta Orthop Scand (Suppl) 90:1–144

    Google Scholar 

  91. Markolf KL (1972) Deformation of the thoracolumbar intervertebral joints in response to external loads. J Bone Joint Surg 54A:511–533

    Google Scholar 

  92. Myklebust JB, Yoganandan N, Sances A Jr (1987) Failure biomechanics of thoracolumbar vertebrae. ASME Adv Bioeng, pp 99–100

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Japan

About this paper

Cite this paper

Burr, D.B., Yang, K.H., Haley, M., Wang, HC. (1995). Morphological Changes and Stress Redistribution in Osteoporotic Spine. In: Takahashi, H.E. (eds) Spinal Disorders in Growth and Aging. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66939-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66939-5_11

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66941-8

  • Online ISBN: 978-4-431-66939-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics