Natriuretic Peptide mRNA in SHR and WKY

  • I. Tanaka
  • K. Komatsu
  • T. Funai
  • A. Ichiyama
  • T. Yoshimi
Conference paper


Atrial natriuretic peptide (ANP) is a recently discovered hormone from the cardiac atria [1]. The potent diuretic, natriuretic and vasorelaxant activities of ANP suggested the involvement of this cardiac hormone in the regulation of blood pressure, body fluid and electrolytes. Originally, studies using radioimmunoassay (RIA) and blot hybridization technique revealed the presence of large quantities of immunoreactive ANP (IR-ANP) and ANP messenger RNA (ANP mRNA) in the atrium but not in the ventricle [2,3]. However, following studies indicated the synthesis of ANP in various extraatrial tissues including the ventricle [4]. Its biological actions directed much attention to the implication of ANP in hypertension. Changes of IR-ANP concentrations in plasma and tissue of hypertensive rats were investigated [5,6]. Elevated ANP mRNA levels in atria and ventricles of spontaneously hypertensive rats (SHR) were also reported [7]. Recently, Sudoh et al. isolated and determined brain natriuretic peptide (BNP) from porcine brain, which derived from a distinct gene from ANP and possesses diuretic, natriuretic and vasorelaxant activities [8]. This natriuretic peptide family, ANP and BNP, seems to construct a complex regulatory system in mammalian circulation. In this study, to elucidate the pathophysiological role of natriuretic peptide family in hypertension, we tried to determine IR-ANP, IR-BNP and ANP mRNA levels in SHR and Wistar Kyoto rats (WKY).


Natriuretic Peptide Brain Natriuretie Peptide Atrial Natriuretie Peptide Natriuretic Peptide Receptor Atrial Natriuretie Peptide Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maki M., Takayanagi R., Misono KS., Pandey KN., Tibbetts C., Inagami T (1984) Nature 309:722–724PubMedCrossRefGoogle Scholar
  2. 2.
    Tanaka I. Misono KS. Inagami T. Inayama S. (1984) Biochem Biophys Res Commun 124:663–668PubMedCrossRefGoogle Scholar
  3. 3.
    Nakayama K. Ohkubo T. Hirose S. Inayama S. Nakanishi S (1984) Nature 310:699–701PubMedCrossRefGoogle Scholar
  4. 4.
    Takayanagi R. Imada T. Inagami T (1987) Biochem Biophys Res Commun 142:483–488PubMedCrossRefGoogle Scholar
  5. 5.
    Tanaka I. Inagami T (1986) J Hypertens 4:109–112PubMedCrossRefGoogle Scholar
  6. 6.
    Morii N. Nakao K. Kihara M. et al. (1986) J Hypertens 4(suppl 3):S317–S319Google Scholar
  7. 7.
    Arai H. Nakao K. Saito Y. et al. (1987) Cire Res 62:926–930CrossRefGoogle Scholar
  8. 8.
    Sudoh T. Kangawa K. Minamino N. Matsuo H (1988) Nature 332:78–81PubMedCrossRefGoogle Scholar
  9. 9.
    Morita H. Tanaka I. Oda T. Ichiyama A. Yamazaki T. Uematsu T. Nakashima M. Yoshimi T (1990) Peptides 11:843–847PubMedCrossRefGoogle Scholar
  10. 10.
    Sudoh T. Minamino N. Kangawa K. Matsuo H (1990) Biochem Biophys Res Commun 168:863–870PubMedCrossRefGoogle Scholar
  11. 11.
    Chinkers M. Gerbers DL. Chang MS. et al. (1989) Nature 338:78–83PubMedCrossRefGoogle Scholar
  12. 12.
    Aburaya M. Minamino N. Hino J. Kangawa K. Matsuo H (1989) Biochem Biophys Res Commun 165:880–887PubMedCrossRefGoogle Scholar
  13. 13.
    Brown J. Czarnecki A (1990) Am J Physiol 258:R1078–R1083Google Scholar
  14. 14.
    Gardner DG. Vlasuk GP. Baxter JD. Fiddes JC. Lewicki JA (1987) Proc Natl Acad Sci USA 84:2175–2179PubMedCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • I. Tanaka
    • 1
  • K. Komatsu
    • 1
  • T. Funai
    • 2
  • A. Ichiyama
    • 2
  • T. Yoshimi
    • 1
  1. 1.Second Department of Internal MedicineHamamatsu University School of MedicineHamamatsuJapan
  2. 2.First Department of BiochemistryHamamatsu University School of MedicineHamamatsuJapan

Personalised recommendations