Quasi-Particle Interferometer Controlled by Andreev Reflection

  • Hayato Nakano
  • Hideaki Takayanagi
Conference paper


We propose a quasiparticle interferometer for experimentally confirming the predicted interaction between the microscopic phase of a quasiparticle and the macroscopic phase of a superconducting state. Andreev reflection at the superconductor- normal-metal (S-N) interface causes phase interaction. The proposed interferometer consists of a Josephson junction and a Y-junction composed of normal electron waveguides. In this setup, the phase interaction due to Andreev reflection affects the quasiparticle interference. Thus the amount of supercurrent flowing through the Josephson junction controls the resistance across the end of a waveguide branch and one electrode of the Josephson junction.


Superconducting State Josephson Junction Andreev Reflection Macroscopic Phase Josephson Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Umbach CP, Washburn S, Laibowitz RB, Webb RA (1984) Phys Rev B30: 4048–4051ADSCrossRefGoogle Scholar
  2. 2.
    Webb RA, Washburn S, Umbach CP, Laibowitz RB (1985) Phys Rev Lett 54: 2696–2699ADSCrossRefGoogle Scholar
  3. 3.
    Ford CJB, Fowler AB, Hong JM, Knoedeler CM, Laux SE, Wainer JJ, Washburn S (1990) Surface Sci 229: 307–311ADSCrossRefGoogle Scholar
  4. 4.
    Tokura Y, Tsubaki K (1987) Appl Phys Lett 51: 1807–1808ADSCrossRefGoogle Scholar
  5. 5.
    Josephson BD (1962) Phys Lett 1: 251–253ADSMATHCrossRefGoogle Scholar
  6. 6.
    Van Duzer T, Turner CW (1981) Principles of Superconductive Devices and Circuits. Elsevier North Holland, New York (and references therein )Google Scholar
  7. 7.
    Andreev AF (1964) Sov Phys JETP 19: 1228–1231Google Scholar
  8. 8.
    Spivak BZ, Khmel’nitskii DE (1982) JETP Lett 35: 412–416ADSGoogle Scholar
  9. 9.
    de Gennes PG (1966) Superconductivity of Metals and Alloys. Benjamin, New YorkGoogle Scholar
  10. 10.
    Blonder GE, Tinkham M, Klapwijk TM (1982) Phys Rev B25: 4515–4532ADSCrossRefGoogle Scholar
  11. 11.
    Schrödinger E (1935) Naturwiss 23: 844–849ADSCrossRefGoogle Scholar
  12. 12.
    Aharonov Y, Bohm D (1959) Phys Rev 115: 485–491MathSciNetADSMATHCrossRefGoogle Scholar
  13. 13.
    Feng S, Hu Y (1988) Phys Rev B38: 11871–11873CrossRefGoogle Scholar
  14. 14.
    Nitta J, Nakano H, Akazaki T, Takayanagi H (1991) In: Koch H, Lübbig H (eds) Proceedings SQUID 1991. Springer, HeidelbergGoogle Scholar
  15. 15.
    Nakano H, Akazaki T, Nitta J, Takayanagi H (1991) Solid State Commun 80: 251–253ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Hayato Nakano
  • Hideaki Takayanagi
    • 1
  1. 1.NTT Basic Research LaboratoriesMusashino, Tokyo, 180Japan

Personalised recommendations