Polarization-Dependent Optical Nonlinearities in GaAs/AlGaAs Fractional Layer Superlattices

  • Arturo Chavez-Pirson
  • Junji Yumoto
  • Hiroaki Ando
  • Takashi Fukui
  • Hiroshi Kanbe
Conference paper


(AlAs) m (GaAs) n sub-monolayer superlattices (m,n < 1), also called fractional layer superlattices (FLS), exhibit nanometer-scale compositional corrugation parallel to the grown surface. This attractive feature makes it possible to obtain structures exhibiting quantum confinement effects in the direction perpendicular to, as well as along, the growth direction. One important consequence of lateral confinement is the appearance of anisotropies in the linear and nonlinear optical properties. The study of the optical anisotropies not only reveals the underlying physical properties but also may offer new optical device functionalities. We measure the room temperature polarization-dependent nonlinear absorption and refractive index spectra of a (Al0.5Ga0.5As)1/2(GaAs)1/2 fractional-layer superlattice (FLS) structure grown by metalorganic chemical vapor deposition. The size of the room temperature optical nonlinearity expressed by σ eh (= Δα/N) is 6 × 10−15cm2. The microscopic nonlinear mechanism in this FLS is band-filling and the switch-on time of the nonlinearity we measure to be less than 4 ps. We directly measure the anisotropic nonlinear effects between the directions parallel and perpendicular to the superlattice steps that give rise to a nonlinear optical birefringence in the plane of the growth surface. The nonlinear birefringence makes the FLS attractive as a nonlinear material for arrays of surface-normal, polarization-based semiconductor optical switching devices.


Nonlinear Optical Property Nonlinear Absorption Optical Anisotropy Nonlinear Refractive Index Wire Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Petroff PM, Gossard AC, Wiegmann W (1984) Appl Phys Lett 45: 620ADSCrossRefGoogle Scholar
  2. 2.
    Fukui T, Saito H (1987) Appl Phys Lett 50: 824ADSCrossRefGoogle Scholar
  3. 3.
    Kasu M, Ando H, Saito H, Fukui T (1991) Appl Phys Lett 59: 301ADSCrossRefGoogle Scholar
  4. 4.
    Ando H, Fukui T, Saito H (1990) In: Extended abstract of the 22nd Conference on solid state devices and materials, B-4–7. Business Center for Academic Societies Japan, Tokyo, pp 123–126Google Scholar
  5. 5.
    Kanbe H, Chavez-Pirson A, Ando H, Saito H, Fukui T (1991) Appl Phys Lett 58: 2969ADSCrossRefGoogle Scholar
  6. 6.
    Chavez-Pirson A, Yumoto J, Ando H, Fukui T, Kanbe H (1991) Appl Phys Lett 59: 2654ADSCrossRefGoogle Scholar
  7. 7.
    Fukui T, Saito H (1988) J Vac Sci Technol B6: 1373ADSCrossRefGoogle Scholar
  8. 8.
    Fukui T, Saito H (1990) Jpn J Appl Phys 29: L731ADSCrossRefGoogle Scholar
  9. 9.
    LePore JJ (1980) J Appl Phys 51: 6441ADSCrossRefGoogle Scholar
  10. 10.
    Yamanishi M, Suemune I (1984) Jpn J Appl Phys 23: L35ADSCrossRefGoogle Scholar
  11. 11.
    Asada M, Kameyama A, Suematsu Y (1984) IEEE J Quant Electron QE-20: 745Google Scholar
  12. 12.
    Lee YH, Gibbs H, Jewell J, Duffy J, Venkatesan T, Gossard A, Wiegmann W, English J (1986) Appl Phys Lett 49: 486ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Arturo Chavez-Pirson
  • Junji Yumoto
  • Hiroaki Ando
  • Takashi Fukui
  • Hiroshi Kanbe
    • 1
  1. 1.NTT Basic Research LaboratoriesTokyo, 180Japan

Personalised recommendations