Advertisement

Hole-State Mixing and Nonlinear Optical Properties of Semiconductor Quantum Dots

  • Nasser Peyghambarian
  • Stephan W. Koch
  • Brian McGinnis
  • Koo Kang
  • Sandalphon
  • Yuan Z. Hu
  • Subhash H. Risbud
  • Li-Chi Liu
  • Andre Mysyrowicz
  • Daniele Hulin
Conference paper

Summary

Our recent experimental and theoretical results on optical nonlinearities of semiconductor microcrystallites in glass will be reviewed. One-photon and two-photon absorption spectroscopy are used to show the importance of confinement-induced valence-band mixing for small semiconductor particles. Deviations from the parabolic band approximation are demonstrated.

Keywords

Parabolic Band Linear Absorption Spectrum Parabolic Band Approximation Parabolic Band Model Simple Parabolic Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Efros Al L, Efros AL (1982) (in Russian). Soviet Phys Semicond 16: 772Google Scholar
  2. 2.
    Ekimov AI, Onushchenko AA (1982) (in Russian). Sov Phys Semicond 16: 775Google Scholar
  3. 3.
    Brus LE (1983) J Chem Phys 79:5566ADSCrossRefGoogle Scholar
  4. Bawendi MG, Carroll PJ, Wilson WL, Brus LE (1992) J Chem Phys 92: 946Google Scholar
  5. 4.
    Bawendi MG, Wilson WL, Rothberg PL, Carroll PJ, Jedjin TM, Steigerwald ML, Brus LE (1990) Phys Rev Lett 65:1623; Brus L (1991) Quantum crystallites and nonlinear optics. Appl Phys A 53: 465Google Scholar
  6. 5.
    Hanamura E (1988) Phys Rev B37: 1273ADSCrossRefGoogle Scholar
  7. 6.
    Roussignol P, Richard D, Flytzanis C, Neuroth N (1989) Phys Rev Lett 62: 312ADSCrossRefGoogle Scholar
  8. 7.
    Takagahara T (1989) Phys Rev B39: 10206CrossRefGoogle Scholar
  9. 8.
    Xia J-B (1989) Phys Rev B40: 8500ADSCrossRefGoogle Scholar
  10. 9.
    Hu YZ, Koch SW, Lindberg M, Peyghambarian N, Pollock EL, Abraham FF (1990) Phys Rev Lett 64: 1805ADSCrossRefGoogle Scholar
  11. 10.
    Vahala KJ, Sercel PC (1990) Phys Rev Lett 65: 239ADSCrossRefGoogle Scholar
  12. 11.
    Kang KI, McGinnis BP, Sandalphon, Hu YZ, Koch SW, Peyghambarian N, Mysyrowicz A, Liu LC, Risbud SH (1992) Phys Rev B45: 3465ADSCrossRefGoogle Scholar
  13. 12.
    Rama Krishna MV, Friesner RA (1991) Phys Rev Lett 67: 629ADSCrossRefGoogle Scholar
  14. 13.
    Peyghambarian N, Fluegel B, Hulin D, Migus A, Joffre M, Antonetti A, Koch SW, Lindberg M (1989) IEEE J Quant Elect 25: 2516ADSCrossRefGoogle Scholar
  15. 14.
    Baldereschi A, Lipari NO (1973) Phys Rev B8: 2697ADSCrossRefGoogle Scholar
  16. 15.
    Luttinger JM (1956) Phys Rev 102: 1030ADSMATHCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Nasser Peyghambarian
  • Stephan W. Koch
  • Brian McGinnis
  • Koo Kang
  • Sandalphon
  • Yuan Z. Hu
    • 1
  • Subhash H. Risbud
  • Li-Chi Liu
    • 2
  • Andre Mysyrowicz
  • Daniele Hulin
    • 3
  1. 1.Optical Sciences CenterUniversity of ArizonaTucsonUSA
  2. 2.Mechanical, Aeronautical, and Material EngineeringUniversity of CaliforniaDavisUSA
  3. 3.ENSTA, Laboratoire d’Optique AppliqueéEcole PolytechniquePalaiseauFrance

Personalised recommendations