Combined Quantum Control of Electron-and Photon-Systems in Semiconductor Mesoscopic Structures: Toward an Ultimate Goal of Semiconductor Light Emitters

  • Masamichi Yamanishi
Conference paper


This paper reviews two recent topics regarding physical phenomena and possible device applications which originate from combined quantum control of both electron- and photon-systems in semiconductor mesoscopic structures. The first concerns experimental results involving the systematic alteration of excitonic spontaneous emissions through continuous tuning of emission wavelength by electric fields applied to GaAs quantum wells located inside half-wavelength planar cavities sandwiched between pairs of A1GaAs distributed Bragg reflectors. The result indicates a possibility of highly efficient and extremely high speed light emitting devices, even including beam steering, which operate with the switching of the coupling efficiency of the spontaneous emission in the micro-cavities. The second is a theoretical proposal for novel semiconductor surface-emitting lasers. In the proposed lasers, all spontaneous emission is coupled into a single lasing mode. Quantum boxes biased by a dc-electric field separate the emission line from the absorption line by an image-charge-induced increase in the electric field, resulting in a perfect population inversion at an arbitrarily low pump rate. As a result, the threshold current of the proposed laser could be reduced down to below 100nA, which is ultimately low for a given decay rate of photons in the cavity,~1011s−1.


Spontaneous Emission Quantum Well Distribute Bragg Reflector Single Lasing Mode Single Quantum Well 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Purcell EM (1946) Phys Rev 69: 681CrossRefGoogle Scholar
  2. 2.
    Goy P, Raimond JM, Gross M, Haroche S (1983) Phys Rev Lett 50: 1903–1906ADSCrossRefGoogle Scholar
  3. 3.
    Gabrielse G, Dehmelt H (1985) Phys Rev Lett 55: 67–70ADSCrossRefGoogle Scholar
  4. 4.
    Hulet RG, Hilfer ES, Kleppner D (1985) Phys Rev Lett 55: 2137–2140ADSCrossRefGoogle Scholar
  5. 5.
    Heinzen DJ, Childs JJ, Thomas JE, Feld MS (1987) Phys Rev Lett 58: 1320–1323ADSCrossRefGoogle Scholar
  6. 6.
    Jhe W, Anderson A, Hinds EA, Meschede D, Moi L, Haroche S (1987) Phys Rev Lett 58: 666–669ADSCrossRefGoogle Scholar
  7. 7.
    DeMartini F, Jacobovitz GR (1988) Phys Rev Lett 60: 1711–1714ADSCrossRefGoogle Scholar
  8. 8.
    Yablonovitch E, Gmitter TJ, Bhat R (1988) Phys Rev Lett 61: 2546–2549ADSCrossRefGoogle Scholar
  9. 9.
    Yamamoto Y, Machida S, Horikoshi Y, Igeta K (1991) Optics Comm 80: 337–342ADSCrossRefGoogle Scholar
  10. 10.
    Yamamoto Y, Machida S, Igeta K, Bjork G (1991) In: Yamamoto Y (ed) Coherence, amplification and quantum effects in semiconductor lasers. Wiley, New York, pp 561615Google Scholar
  11. 11.
    Yokoyama H, Nishi K, Anan T, Yamada H, Brorson SD, Ippen E (1990) Appl Phys Lett 57: 2814–2816ADSCrossRefGoogle Scholar
  12. 12.
    Rogers Ti, Deppe DG, Streetman BG (1990) Appl Phys Lett 57: 1858–1860ADSCrossRefGoogle Scholar
  13. 13.
    Yamaguchi T, Arakawa Y, Nishioka M (1991) Appl Phys Lett 58: 2339–2341ADSCrossRefGoogle Scholar
  14. 14.
    Miller DAB, Chemla DS, Schmitt-Rink S (1988) In: Haug H (ed) Optical nonlinearities and instabilities in semiconductors. Academic San Diego, pp 325–359Google Scholar
  15. 15.
    Ochi N, Shiotani T, Yamanishi M, Honda Y, Suemune I (1991) Appl Phys Lett 58: 2735–2737ADSCrossRefGoogle Scholar
  16. 16.
    Honda Y, Lee Y, Yamanishi M, Ochi N, Shiotani T, Suemune I (1992) Surf Sci 267: 612ADSCrossRefGoogle Scholar
  17. 17.
    Yamanishi M, Yamamoto Y, Shiotani T (1991) IEEE Photonics Technology Lett 3: 888ADSCrossRefGoogle Scholar
  18. 18.
    Yamanishi M, Yamamoto Y (1991) Jpn J Appl Phys 30: L60 — L63ADSCrossRefGoogle Scholar
  19. 19.
    Kan Y, Okuda M, Yamanishi M, Ohnishi T, Mukaiyama K, Suemune I (1990) Appl Phys Lett 56: 2059–2061.ADSCrossRefGoogle Scholar
  20. 20.
    Mukaiyama K, Yamanishi M, Kan Y, Ohnishi T, Okuda M, Suemune I (1990) Jpn J Appl Phys 29: L967 — L970ADSCrossRefGoogle Scholar
  21. 21.
    Meschede D, Walther H, Muller G (1985) Phys Rev Lett 54: 551–554ADSCrossRefGoogle Scholar
  22. 22.
    Takeuchi A, Muto S, mata T, Fujii T (1990) Appl Phys Lett 56: 2213–2215ADSCrossRefGoogle Scholar
  23. 23.
    Yamanishi M, Osaka Y, Kurosaki M (1990) Jpn J Appl Phys 29: L308 — L311ADSCrossRefGoogle Scholar
  24. 24.
    Slater JC (1968) McGraw-Hill, New York, pp 326–335Google Scholar
  25. 25.
    Ohtoshi T, Yamanishi M (1991) Jpn J Appl Phys 30: L1406 — L1408ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Masamichi Yamanishi
    • 1
  1. 1.Department of Physical Electronics, Faculty of EngineeringHiroshima UniversityHigashihiroshima, 724Japan

Personalised recommendations