Advertisement

Ultrafast Behavior of Optically-Nonlinear Etalons

  • Jérôme Paye
  • Danièle Hulin

Summary

Nonlinear Fabry-Perot étalons are among the most promising candidates for all-optical switching and bistability. We have studied the temporal behavior of such a device with a GaAs/AlGaAs supperlattice as intracavity material. The use of the optical Stark effect on the excitonic resonances provides an ultrafast mechanism for intracavity nonlinearity, which allows us to obtain subpicosecond switching times.

Keywords

Pump Pulse Pump Intensity Pump Wavelength Optical Bistability Excitonic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gibbs HM (1985) Optical bistability: Controlling light with light. Academic, LondonGoogle Scholar
  2. 2.
    Bishofberger T, Shen YR (1979) Phys Rev A19: 1169ADSCrossRefGoogle Scholar
  3. 3.
    Goldstone JA, Garmire EM (1981) IEEE J Quantum Electron QE-17:366Google Scholar
  4. 4.
    Lambsdorff M, Kuhl J, Rosenzweig J, Axmann A, Schneider J (1991) Appl Phys Lett 58: 1881ADSCrossRefGoogle Scholar
  5. 5.
    Frankel MY, Whitaker JF, Mourou GA, Smith FW, Calawa AR (1990) IEEE Trans Electron Devices 17: 2493ADSCrossRefGoogle Scholar
  6. 6.
    Peterson CW, Knight BW (1973) JOSA B63: 1238ADSCrossRefGoogle Scholar
  7. 7.
    Yokoyama H (1989) IEEE J Quantum Electron 25: 1190ADSCrossRefGoogle Scholar
  8. 8.
    Kuszelewicz R, Oudar JL, Michel JC, Azoulay R (1988) Appl Phys Lett 53: 2138ADSCrossRefGoogle Scholar
  9. 9.
    Sfez BG, Oudar JL, Michel JC, Kuszelewicz R, Azoulay R (1990) Appl Phy Lett 57: 324ADSCrossRefGoogle Scholar
  10. 10.
    Mysyrowicz A, Hulin D, Antonetti A, Migus A, Masselink WT, Morkoç H (1986) Phys Rev Lett 56: 2748ADSCrossRefGoogle Scholar
  11. 11.
    Von Lehmen A, Chemla DS, Zucjer JE, Heritage JP (1986) Opt Lett 11: 609ADSCrossRefGoogle Scholar
  12. 12.
    Wherret BS (1984) J Opt Soc Am B1: 67CrossRefGoogle Scholar
  13. 13.
    Sheik-Bahae M, Hagan DJ, Van Stryland EW (1991) Phys Rev Lett 65: 96ADSCrossRefGoogle Scholar
  14. 14.
    Aitchison JS, Kean AH, Ironside CN, Villeneuve A, Stegeman GI (1991) Paper at the Nonlinear guided-wave phenomena conference, Cambridge, UK, 2–4 September 1991Google Scholar
  15. 15.
    Islam MN, Soccolich CE, Slusher RE, Levi AFJ, Hobson WS, Young MG (1991) Paper at the Nonlinear guided-wave phenomena conference, Cambridge, UK, 2–4 September 1991Google Scholar
  16. 16.
    Tsang HK, Penty RV, White IW, Grant RS, Sibbett W (1991) Paper at the Nonlinear guided-wave phenomena conference, Cambridge, UK, 2–4 September 1991Google Scholar
  17. 17.
    Huhn D, Mysyrowicz A, Antonetti A, Migus A, Masselink WT, Morkoç H, Gibbs HM, Peyghambarian N (1986) Appl Phys Lett 49: 749ADSCrossRefGoogle Scholar
  18. 18.
    Chemla DS, Miller DAB, Smith PW, Gossard AC, Wiegmann W (1984) IEEE J Quantum Electron QE-20:265Google Scholar
  19. 19.
    Olin U (1990) J Opt Soc Am B7: 35CrossRefGoogle Scholar
  20. 20.
    Firth WJ, Galbraith I, Wright EM (1985) J Opt Soc Am B2: 1005CrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Jérôme Paye
  • Danièle Hulin
    • 1
  1. 1.Laboratoire d’Optique AppliquéeENSTA—Ecole PolytechniquePalaiseauFrance

Personalised recommendations