Time Resolved Nonlinear Optical Spectroscopy of Magnetically Confined Excitons

  • Jason B. Stark
  • Wayne H. Knox
  • Daniel S. Chemla
Conference paper


A perpendicular magnetic field confines the quasi-two-dimensional (2D) electronic states of a quantum well into quasi-zero-dimensional (0D) magneto-excitons. Short-pulse broadband optical studies demonstrate that at high field, a gas of magneto-excitons behaves like an ensemble of atomic two-level systems. Excitation of a nonthermal distribution of 2D carriers at zero field results in rapid relaxation to a thermal distribution; at high field, all low-energy scattering channels are eliminated, so that in 0D, relaxation rates decrease by several orders of magnitude relative to 2D. Magnetic confinement in quantum wells permits the study of the interactions and relaxation dynamics of electon-hole pairs, in materials of excellent optical quality, as their dimensionality is continuously tuned from 2D to 0D.


Pair State Excitonic State Resonant Excitation Nonlinear Optical Response Coulomb Correlation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maan JC, Belle G, Fasolino A, Altarelli M, Ploog K (1984) Phys Rev B30: 2253MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    Miura N, Iwasa Y, Tarucha S, Okamoto H (1985) In: Chadi JD, Harrison WA (eds) Proc 17th int Conf on the physics of semiconductors. Springer, New YorkGoogle Scholar
  3. 3.
    Ossau W, Jäkel B, Bangert E, Landwehr G, Weimann G (1986) Surf Sci 174: 188ADSCrossRefGoogle Scholar
  4. 4.
    Rogers DC, Singleton J, Nicholas RJ, Foxon CBT, Woodbridge K (1986) Phys Rev B34: 4002ADSCrossRefGoogle Scholar
  5. 5.
    Bugajski M, Kuszko W, Reginski K (1986) Solid State Commun 60: 669ADSCrossRefGoogle Scholar
  6. 6.
    Ossau W, Jäkel B, Bangert E (1987). In: Landwehr G (ed) High magnetic fields in semiconductor physics. Springer, BerlinGoogle Scholar
  7. 7.
    Akimoto O, Hasegawa H (1967) J Phys Soc Jpn 22: 181ADSCrossRefGoogle Scholar
  8. 8.
    Shinada M, Tanaka K (1970) J Phys Soc Jpn 29: 1258ADSCrossRefGoogle Scholar
  9. 9.
    Shinada M, Sugano S (1966) J Phys Soc Jpn 21: 1936ADSCrossRefGoogle Scholar
  10. 10.
    MacDonald AH, Ritchie DS (1985) Phys Rev B33: 8336Google Scholar
  11. 11.
    Greene RL, Bajaj KK (1985) Phys Rev B31: 6498ADSCrossRefGoogle Scholar
  12. 12.
    Yang SRE, Sham LJ (1987) Phys Rev Lett 58: 2598ADSCrossRefGoogle Scholar
  13. 13.
    Bauer GEW, Ando T (1988) Phys Rev B37: 3130ADSCrossRefGoogle Scholar
  14. 14.
    Chu H, Chang YC (1989) Phys Rev B40: 5497ADSCrossRefGoogle Scholar
  15. 15.
    Stark JB, Knox WH, Chemla DS, Schäfer W, Schmitt-Rink S, Stafford C (1990) Phys Rev Lett 65: 3033ADSCrossRefGoogle Scholar
  16. 16.
    Stafford C, Schmitt-Rink S, Schäfer W (1990) Phys Rev B41: 10000CrossRefGoogle Scholar
  17. 17.
    Knox WH (1987) J Opt Soc Am B4: 1771CrossRefGoogle Scholar
  18. 18.
    Stark JB (1991) Ph D thesis, Massachusetts Institute of TechnologyGoogle Scholar
  19. 19.
    Knox WH, Chemla DS, Miller DAB, Stark JB, Schmitt-Rink S (1989) Phys Rev Lett 62: 1189ADSCrossRefGoogle Scholar
  20. 20.
    Schmitt-Rink S, Chemla DS, Miller DAB (1989) Adv Phys 38: 89ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Jason B. Stark
    • 1
  • Wayne H. Knox
    • 1
  • Daniel S. Chemla
    • 1
  1. 1.AT & T Bell LaboratoriesHolmdelUSA

Personalised recommendations