Coherent Ballistic Transport in Micro-Junctions: Quenching, Fluctuations, and Chaos

  • Harold U. Baranger
  • Rodolfo A. Jalabert
  • A. Douglas Stone
Conference paper


We compare the quantum and classical transport properties of ballistic microstructures and find two important differences. First, there are large fluctuations of the quantum conductance in experimentally realizable structures caused by coherent scattering from the geometric features. These fluctuations arise from interference between long paths trapped in a junction or cavity. A semiclassical argument shows that the scale of the magnetic field correlation function for the quantum fluctuations is determined by the underlying chaotic classical scattering, a result which is confirmed numerically. Second, we extract the average quantum behavior using an ensemble of very weak impurities and some thermal broadening. While the classical and quantum results are in good qualitative agreement, we find substantial quantitative differences that persist well into the many-channel (classical) limit. The first effect should be observable in low-temperature resistance measurements on high-mobility heterostructure devices; the second is relevant to recent experiments on quenching of the Hall resistance.


Green Function Quantum Fluctuation Quantum Chaos Ballistic Structure Hall Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beenakker CWJ, van Houten H (1991) In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol. 44. Academic, New York, pp 1–228Google Scholar
  2. 2.
    Beenakker CWJ, van Houten H (1989) Phys Rev Lett 63: 1857ADSCrossRefGoogle Scholar
  3. 3.
    Baranger HU, Stone AD (1989) Phys Rev Lett 63: 414ADSCrossRefGoogle Scholar
  4. 4.
    Jalabert RA, Baranger HU, Stone AD (1990) Phys Rev Lett 65: 2242ADSCrossRefGoogle Scholar
  5. 5.
    Baranger HU, DiVincenzo DP, Jalabert RA, Stone AD (1991) Phys Rev B44: 10637CrossRefGoogle Scholar
  6. 6.
    Roukes ML, Scherer A, Allen SJ, Jr, Craighead HG, Ruthen RM, Beebe ED, Harbison JP (1987) Phys Rev Lett 59: 3011ADSCrossRefGoogle Scholar
  7. 7.
    Ford CJB, Thornton TJ, Newbury R, Pepper M, Ahmed H, Peacock DC, Ritchie DA, Frost JEF, Jones GAC (1988) Phys Rev B38: 8518ADSCrossRefGoogle Scholar
  8. 8.
    Timp G, Baranger HU, deVegvar P, Cunningham JE, Howard RE, Behringer R, Mankiewich PM (1988) Phys Rev Lett 60: 2081ADSCrossRefGoogle Scholar
  9. 9.
    Ford CJB, Washburn S, Büttiker M, Knoedler CM, Hong JM (1989) Phys Rev Lett 62: 2724ADSCrossRefGoogle Scholar
  10. 10.
    Chang AM, Chang TY, Baranger HU (1989) Phys Rev Lett 63: 1860ADSGoogle Scholar
  11. 11.
    Takagaki Y, Gamo Y, Namba S, Ishida S, Takaoka S, Murase K, Ishibashi K, Aoyagi Y (1988) Solid State Commun 68: 1051;ADSCrossRefGoogle Scholar
  12. Takagaki Y, Gamo K, Namba S, Takaoka S, Murase K (1990) Solid State Commun 75: 873ADSCrossRefGoogle Scholar
  13. 12.
    Timp G, Behringer R, Sampere S, Cunningham JE, Howard RE (1989) In: Reed MA, Kirk WP (eds) Nanostructure physics and fabrication. Academic New York, p 331Google Scholar
  14. 13.
    Roukes ML, Scherer A, Van der Gaag BP (1990) Phys Rev Lett 64: 1154ADSCrossRefGoogle Scholar
  15. 14.
    Landauer R (1957) IBM J Res Dev 1:233; (1987)Google Scholar
  16. Landauer R. Z Phys B68:217Google Scholar
  17. 15.
    Büttiker M (1986) Phys Rev Lett 57: 1761ADSCrossRefGoogle Scholar
  18. 16.
    Baranger HU, Stone AD (1989) Phys Rev B40:8169 (and references therein)Google Scholar
  19. 17.
    Beenakker CWJ, van Houten H (1988) Phys Rev Lett 60: 2406ADSCrossRefGoogle Scholar
  20. 18.
    Peeters FM (1988) Phys Rev Lett 61: 589ADSCrossRefGoogle Scholar
  21. 19.
    Kirczenow G (1988) Phys Rev B38: 10958CrossRefGoogle Scholar
  22. 20.
    Akera H, Ando T (1989) Phys Rev B39: 5508MathSciNetADSGoogle Scholar
  23. 21.
    Ravenhall DG, Wyld HW, Schult RK (1989) Phys Rev Lett 62: 1780;ADSCrossRefGoogle Scholar
  24. Schult RL, Wyld HW, Ravenhall DG, (1990) Phys Rev B41: 12760CrossRefGoogle Scholar
  25. 22.
    Kirczenow G (1989) Solid State Commun 71:469; (1989)Google Scholar
  26. Kirczenow G. Phys Rev Lett 62:2993Google Scholar
  27. 23.
    Baranger HU, Stone AD (1990) Surf Sci 299: 212ADSCrossRefGoogle Scholar
  28. 24.
    Li Q, Thouless DJ (1990) Phys Rev Lett 65: 767ADSCrossRefGoogle Scholar
  29. 25.
    Akera H, Ando T (1990) Phys Rev B41: 11967CrossRefGoogle Scholar
  30. 26.
    Glazman LI, Lesovick GB, Khmelnitskii DE, Shekhter RI (1988) Pis’ma Ah Teor Fiz (in Russian) 48: 218Google Scholar
  31. Glazman LI, Lesovick GB, Khmelnitskii DE, Shekhter RI. JETP Lett 48: 238 (1988)ADSGoogle Scholar
  32. 27.
    Beenakker CWJ, van Houten H (1989) Phys Rev B39: 10445CrossRefGoogle Scholar
  33. 28.
    Imry Y (1989) In: Reed MA, Kirk WP (eds) Nanostructure physics and fabrication. Academic, New York, p 379;Google Scholar
  34. Yacoby A, Imry Y, (1990) Phys Rev B41: 5341ADSCrossRefGoogle Scholar
  35. 29.
    Imry Y (1986) In: Grinstein G, Mazenko E (eds) Perspectives on condensed matter physics. World Publishing, SingaporeGoogle Scholar
  36. 30.
    Baranger HU (1990) Phys Rev B42: 11479CrossRefGoogle Scholar
  37. 31.
    Messiah A, Quantum mechanics (1985) Wiley, New York, pp 825–828Google Scholar
  38. 32.
    Gutzwiller M (1991) Chaos in classical and quantum mechanics. Springer, New YorkGoogle Scholar
  39. 33.
    Bohigas O, Giannoni MJ, Schmit C (1984) Phys Rev Lett 52: 1MathSciNetADSzbMATHCrossRefGoogle Scholar
  40. Berry MV (1985) Proc Roy Soc Lond A400: 229ADSzbMATHCrossRefGoogle Scholar
  41. 34.
    Brody TA, Flores J, French JB, Mello PA, Pandey A, Wong SSM (1981) Rev Mod Phys 53:385 (and refs. therein)Google Scholar
  42. 35.
    Gutzwiller MC (1983) Physica D7: 341MathSciNetGoogle Scholar
  43. 36.
    Blümel R, Smilansky U (1988) Phys Rev Lett 60: 477;ADSCrossRefGoogle Scholar
  44. Blümel R, Smilansky U (1990) Phys Rev Lett 64: 241;MathSciNetADSzbMATHCrossRefGoogle Scholar
  45. Blümel R, Smilansky U. Physica (1989) D36: 111MathSciNetzbMATHGoogle Scholar
  46. 37.
    Doron E, Smilansky U, Frenkel A (1990) Phys Rev Lett 65: 3072;ADSCrossRefGoogle Scholar
  47. Doron E, Smilansky U, Frenkel A (1991) Physica D50: 367zbMATHGoogle Scholar
  48. 38.
    Lewenkopf CH, Weidenmüller HA (1991) Ann Phys 212: 53ADSzbMATHCrossRefGoogle Scholar
  49. 39.
    Jung C, Scholz HJ (1987) J Phys A20: 3607MathSciNetADSzbMATHGoogle Scholar
  50. 40.
    Eckhardt B (1987) J Phys A20: 5971MathSciNetADSGoogle Scholar
  51. 41.
    Tél T (1989) J Phys A22: L691ADSGoogle Scholar
  52. 42.
    Gaspard P, Rice SA (1989) J Chem Phys 90: 2225, 2242, 2255MathSciNetADSGoogle Scholar
  53. 43.
    Bleher S, Ott E, Grebogi C (1989) Phys Rev Lett 63: 919ADSCrossRefGoogle Scholar
  54. 44.
    Roukes ML, Alerhand OL (1990) Phys Rev Lett 65: 1651ADSCrossRefGoogle Scholar
  55. 45.
    Jalabert RA (1992) Bull Am Phys Soc 36: 743Google Scholar
  56. 46.
    Oakeshott RBS, MacKinnon A (1992) In:Kirk W Reed MA (eds) Nanostructure physics and fabrication. Academic, New YorkGoogle Scholar
  57. 47.
    Büttiker M (1986) Phys Rev B33: 3020;CrossRefGoogle Scholar
  58. Datta S (1989) Phys Rev B40: 5830;ADSCrossRefGoogle Scholar
  59. Feng S (1990) Phys Lett A143: 400;CrossRefGoogle Scholar
  60. Stern A, Aharonov Y, Imryy (1990) Phys Rev 41: 3436;ADSCrossRefGoogle Scholar
  61. Kirczenow G (1990) Solid State Commun 74: 1051;ADSCrossRefGoogle Scholar
  62. D’Amato JL, Pastawski HM (1990) Phys Rev 41: 7441;Google Scholar
  63. Hershfield S (1991) Phys Rev B43: 11586CrossRefGoogle Scholar
  64. 48.
    Lee PA, Stone AD, Fukuyama H (1987) Phys Rev B35:1039 (and references therein)Google Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Harold U. Baranger
    • 1
  • Rodolfo A. Jalabert
    • 2
  • A. Douglas Stone
    • 2
  1. 1.AT&T Bell Laboratories 1D-230Murray HillUSA
  2. 2.Applied PhysicsYale UniversityNew HavenUSA

Personalised recommendations