Skip to main content

Coherent Ballistic Transport in Micro-Junctions: Quenching, Fluctuations, and Chaos

  • Conference paper
Science and Technology of Mesoscopic Structures

Summary

We compare the quantum and classical transport properties of ballistic microstructures and find two important differences. First, there are large fluctuations of the quantum conductance in experimentally realizable structures caused by coherent scattering from the geometric features. These fluctuations arise from interference between long paths trapped in a junction or cavity. A semiclassical argument shows that the scale of the magnetic field correlation function for the quantum fluctuations is determined by the underlying chaotic classical scattering, a result which is confirmed numerically. Second, we extract the average quantum behavior using an ensemble of very weak impurities and some thermal broadening. While the classical and quantum results are in good qualitative agreement, we find substantial quantitative differences that persist well into the many-channel (classical) limit. The first effect should be observable in low-temperature resistance measurements on high-mobility heterostructure devices; the second is relevant to recent experiments on quenching of the Hall resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beenakker CWJ, van Houten H (1991) In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol. 44. Academic, New York, pp 1–228

    Google Scholar 

  2. Beenakker CWJ, van Houten H (1989) Phys Rev Lett 63: 1857

    Article  ADS  Google Scholar 

  3. Baranger HU, Stone AD (1989) Phys Rev Lett 63: 414

    Article  ADS  Google Scholar 

  4. Jalabert RA, Baranger HU, Stone AD (1990) Phys Rev Lett 65: 2242

    Article  ADS  Google Scholar 

  5. Baranger HU, DiVincenzo DP, Jalabert RA, Stone AD (1991) Phys Rev B44: 10637

    Article  Google Scholar 

  6. Roukes ML, Scherer A, Allen SJ, Jr, Craighead HG, Ruthen RM, Beebe ED, Harbison JP (1987) Phys Rev Lett 59: 3011

    Article  ADS  Google Scholar 

  7. Ford CJB, Thornton TJ, Newbury R, Pepper M, Ahmed H, Peacock DC, Ritchie DA, Frost JEF, Jones GAC (1988) Phys Rev B38: 8518

    Article  ADS  Google Scholar 

  8. Timp G, Baranger HU, deVegvar P, Cunningham JE, Howard RE, Behringer R, Mankiewich PM (1988) Phys Rev Lett 60: 2081

    Article  ADS  Google Scholar 

  9. Ford CJB, Washburn S, Büttiker M, Knoedler CM, Hong JM (1989) Phys Rev Lett 62: 2724

    Article  ADS  Google Scholar 

  10. Chang AM, Chang TY, Baranger HU (1989) Phys Rev Lett 63: 1860

    ADS  Google Scholar 

  11. Takagaki Y, Gamo Y, Namba S, Ishida S, Takaoka S, Murase K, Ishibashi K, Aoyagi Y (1988) Solid State Commun 68: 1051;

    Article  ADS  Google Scholar 

  12. Takagaki Y, Gamo K, Namba S, Takaoka S, Murase K (1990) Solid State Commun 75: 873

    Article  ADS  Google Scholar 

  13. Timp G, Behringer R, Sampere S, Cunningham JE, Howard RE (1989) In: Reed MA, Kirk WP (eds) Nanostructure physics and fabrication. Academic New York, p 331

    Google Scholar 

  14. Roukes ML, Scherer A, Van der Gaag BP (1990) Phys Rev Lett 64: 1154

    Article  ADS  Google Scholar 

  15. Landauer R (1957) IBM J Res Dev 1:233; (1987)

    Google Scholar 

  16. Landauer R. Z Phys B68:217

    Google Scholar 

  17. Büttiker M (1986) Phys Rev Lett 57: 1761

    Article  ADS  Google Scholar 

  18. Baranger HU, Stone AD (1989) Phys Rev B40:8169 (and references therein)

    Google Scholar 

  19. Beenakker CWJ, van Houten H (1988) Phys Rev Lett 60: 2406

    Article  ADS  Google Scholar 

  20. Peeters FM (1988) Phys Rev Lett 61: 589

    Article  ADS  Google Scholar 

  21. Kirczenow G (1988) Phys Rev B38: 10958

    Article  Google Scholar 

  22. Akera H, Ando T (1989) Phys Rev B39: 5508

    MathSciNet  ADS  Google Scholar 

  23. Ravenhall DG, Wyld HW, Schult RK (1989) Phys Rev Lett 62: 1780;

    Article  ADS  Google Scholar 

  24. Schult RL, Wyld HW, Ravenhall DG, (1990) Phys Rev B41: 12760

    Article  Google Scholar 

  25. Kirczenow G (1989) Solid State Commun 71:469; (1989)

    Google Scholar 

  26. Kirczenow G. Phys Rev Lett 62:2993

    Google Scholar 

  27. Baranger HU, Stone AD (1990) Surf Sci 299: 212

    Article  ADS  Google Scholar 

  28. Li Q, Thouless DJ (1990) Phys Rev Lett 65: 767

    Article  ADS  Google Scholar 

  29. Akera H, Ando T (1990) Phys Rev B41: 11967

    Article  Google Scholar 

  30. Glazman LI, Lesovick GB, Khmelnitskii DE, Shekhter RI (1988) Pis’ma Ah Teor Fiz (in Russian) 48: 218

    Google Scholar 

  31. Glazman LI, Lesovick GB, Khmelnitskii DE, Shekhter RI. JETP Lett 48: 238 (1988)

    ADS  Google Scholar 

  32. Beenakker CWJ, van Houten H (1989) Phys Rev B39: 10445

    Article  Google Scholar 

  33. Imry Y (1989) In: Reed MA, Kirk WP (eds) Nanostructure physics and fabrication. Academic, New York, p 379;

    Google Scholar 

  34. Yacoby A, Imry Y, (1990) Phys Rev B41: 5341

    Article  ADS  Google Scholar 

  35. Imry Y (1986) In: Grinstein G, Mazenko E (eds) Perspectives on condensed matter physics. World Publishing, Singapore

    Google Scholar 

  36. Baranger HU (1990) Phys Rev B42: 11479

    Article  Google Scholar 

  37. Messiah A, Quantum mechanics (1985) Wiley, New York, pp 825–828

    Google Scholar 

  38. Gutzwiller M (1991) Chaos in classical and quantum mechanics. Springer, New York

    Google Scholar 

  39. Bohigas O, Giannoni MJ, Schmit C (1984) Phys Rev Lett 52: 1

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Berry MV (1985) Proc Roy Soc Lond A400: 229

    Article  ADS  MATH  Google Scholar 

  41. Brody TA, Flores J, French JB, Mello PA, Pandey A, Wong SSM (1981) Rev Mod Phys 53:385 (and refs. therein)

    Google Scholar 

  42. Gutzwiller MC (1983) Physica D7: 341

    MathSciNet  Google Scholar 

  43. Blümel R, Smilansky U (1988) Phys Rev Lett 60: 477;

    Article  ADS  Google Scholar 

  44. Blümel R, Smilansky U (1990) Phys Rev Lett 64: 241;

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. Blümel R, Smilansky U. Physica (1989) D36: 111

    MathSciNet  MATH  Google Scholar 

  46. Doron E, Smilansky U, Frenkel A (1990) Phys Rev Lett 65: 3072;

    Article  ADS  Google Scholar 

  47. Doron E, Smilansky U, Frenkel A (1991) Physica D50: 367

    MATH  Google Scholar 

  48. Lewenkopf CH, Weidenmüller HA (1991) Ann Phys 212: 53

    Article  ADS  MATH  Google Scholar 

  49. Jung C, Scholz HJ (1987) J Phys A20: 3607

    MathSciNet  ADS  MATH  Google Scholar 

  50. Eckhardt B (1987) J Phys A20: 5971

    MathSciNet  ADS  Google Scholar 

  51. Tél T (1989) J Phys A22: L691

    ADS  Google Scholar 

  52. Gaspard P, Rice SA (1989) J Chem Phys 90: 2225, 2242, 2255

    MathSciNet  ADS  Google Scholar 

  53. Bleher S, Ott E, Grebogi C (1989) Phys Rev Lett 63: 919

    Article  ADS  Google Scholar 

  54. Roukes ML, Alerhand OL (1990) Phys Rev Lett 65: 1651

    Article  ADS  Google Scholar 

  55. Jalabert RA (1992) Bull Am Phys Soc 36: 743

    Google Scholar 

  56. Oakeshott RBS, MacKinnon A (1992) In:Kirk W Reed MA (eds) Nanostructure physics and fabrication. Academic, New York

    Google Scholar 

  57. Büttiker M (1986) Phys Rev B33: 3020;

    Article  Google Scholar 

  58. Datta S (1989) Phys Rev B40: 5830;

    Article  ADS  Google Scholar 

  59. Feng S (1990) Phys Lett A143: 400;

    Article  Google Scholar 

  60. Stern A, Aharonov Y, Imryy (1990) Phys Rev 41: 3436;

    Article  ADS  Google Scholar 

  61. Kirczenow G (1990) Solid State Commun 74: 1051;

    Article  ADS  Google Scholar 

  62. D’Amato JL, Pastawski HM (1990) Phys Rev 41: 7441;

    Google Scholar 

  63. Hershfield S (1991) Phys Rev B43: 11586

    Article  Google Scholar 

  64. Lee PA, Stone AD, Fukuyama H (1987) Phys Rev B35:1039 (and references therein)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Japan

About this paper

Cite this paper

Baranger, H.U., Jalabert, R.A., Stone, A.D. (1992). Coherent Ballistic Transport in Micro-Junctions: Quenching, Fluctuations, and Chaos. In: Namba, S., Hamaguchi, C., Ando, T. (eds) Science and Technology of Mesoscopic Structures. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66922-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66922-7_4

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66924-1

  • Online ISBN: 978-4-431-66922-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics