Advertisement

Ultrafine AlGaAs/GaAs Quantum-Well Wire Fabrication by Combining Electron Beam Lithography and Two-Step Wet Chemical Etching

  • Eiichi Ishikawa
  • Susumu Fukatsu
  • Kentaro Onabe
  • Yasuhiro Shiraki
  • Ryoichi Ito
Conference paper

Summary

Ultrafine AlGaAs/GaAs quantum well wire structures as small as 35nm, with smooth sidewalls and low damage, which would otherwise be difficult to produce, e.g., by conventional dry etching, have been successfully fabricated by combining electron beam lithography and two-step wet chemical etching. Photoluminescence measurement has revealed that the thickness of the nonradiative “dead layer” of sidewalls formed during etching is remarkably reduced, even for the finest wires in the quantum regime (35nm), and the associated blue shift of emission due to the two-dimensional quantum confinement of the carriers has been clearly observed.

Keywords

Dead Layer Fine Wire Surface Recombination Velocity Wire Structure Wire Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arakawa Y, Sakaki H (1982) Appl Phys Lett 40: 939–941ADSCrossRefGoogle Scholar
  2. 2.
    Sakaki H (1980) Jpn J Appl Phys 19: L735 - L738ADSCrossRefGoogle Scholar
  3. 3.
    Petroff PM, Gossard AC, Logan RA, Wiegmann W (1982) Appl Phys Lett 41: 635–638ADSCrossRefGoogle Scholar
  4. 4.
    Tsuchiya M, Gaines JM, Yan RH, Simes RJ, Holtz PO, Molden LA, Petroff PM (1991) Phys Rev Lett 62: 466–469ADSCrossRefGoogle Scholar
  5. 5.
    Kapon E, Hwang DM, Bhat R (1989) Phys Rev Lett 63: 430–433ADSCrossRefGoogle Scholar
  6. 6.
    Hirayama Y, Tarucha S, Suzuki Y, Okamoto H (1988) Phys Rev B37: 2774–2777ADSCrossRefGoogle Scholar
  7. 7.
    Izrael A, Sermage B, Marzin JY, Ougazzaden A, Azoulay R, Etrillard J, Uhierry-Mieg V, Henry L (1990) Appl Phys Lett 56: 830–832ADSCrossRefGoogle Scholar
  8. 8.
    Maile BE, Forchel A, Germann R, Straka J, Korte L, Thanner C (1990) Appl Phys Lett 57: 807–809ADSCrossRefGoogle Scholar
  9. 9.
    Katoh T, Nagamune Y, Li GP, Fukatsu S, Shiraki Y, Ito R (1990) Appl Phys Lett 57: 1212–1214ADSCrossRefGoogle Scholar
  10. 10.
    Iida S, Ito K (1971) J Electrochem Soc 118: 768–771CrossRefGoogle Scholar
  11. 11.
    Tarui Y, Komiya Y, Harada Y (1971) J Electrochem Soc 118: 118–122CrossRefGoogle Scholar
  12. 12.
    Maile BE, Forchel A, Germann R, Menshig A, Meier HP, Grutzmacher D (1988) J Vac Sci Technol B6: 2308–2311CrossRefGoogle Scholar
  13. 13.
    Maile BE, Forchel A, Germann R, Grutzmacher D (1989) Appl Phys Lett 54: 1552–1554ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Eiichi Ishikawa
    • 1
  • Susumu Fukatsu
    • 2
  • Kentaro Onabe
    • 1
  • Yasuhiro Shiraki
    • 2
  • Ryoichi Ito
    • 2
  1. 1.Department of Applied PhysicsThe University of TokyoTokyo, 113Japan
  2. 2.Research Center for Advanced Science and Technology (RCAST)The University of TokyoTokyo, 153Japan

Personalised recommendations