Skip to main content

Ultra-High Resolution Electron Beam Patterning of SiO2: A Review

  • Conference paper
Science and Technology of Mesoscopic Structures
  • 191 Accesses

Summary

Arrays of lines with periods down to 15nm have been directly patterned in SiO2 with electron irradiation. Two methods have been developed to eliminate the surface contamination and enable the subsequent development in HF based etches: 1) exposing the oxide through a sacrificial layer and 2) oxygen reactive ion etching. This period is three times better than is possible with polymethylmethacrylate (PMMA), the most widely used high resolution electron beam resist. Preliminary pattern transfer experiments using chlorine reactive ion etching have transferred feature sizes down to 10nm into Si. Because patterned SiO2 is itself extremely useful as a key component of many electronic devices, the ability to directly pattern SiO2 with nanometer scale resolution, albeit with a high dose, will enhance the techniques available to prototype both conventional and quantum effect ultra-small devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chao PC, Shur MS, Tiberio RC, Duh KHG, Smith PM, Ballingall JM, Ho P, Jabra AA (1989) IEEE Trans Electron Dev 36 (3): 461–471

    Article  ADS  Google Scholar 

  2. Patrick W, Mackie WS, Beaumont SP, Wilkinson CDW, Oxley CH (1985) IEEE Electron Dev Lett 6 (9): 471–472

    Article  Google Scholar 

  3. Han J, Ferry DK, Newman P (1990) IEEE Electron Dev Lett 11 (5): 209–211

    Article  ADS  Google Scholar 

  4. Allee DR, de la Houssaye PR, Schlom DG, Harrris JS Jr, Pease RFW (1988) J Vac Sci Technol B6 (1): 328–332

    Article  Google Scholar 

  5. Umbach CP, Palevski A, Heiblum M, Sivan U (1989) J Vac Sci Technol B7 (6): 2003–2006

    Article  Google Scholar 

  6. Ismail K, Chu W, Antoniadis DA, Smith HI (1989) Appl Phys Lett 54: 460–462

    Article  ADS  Google Scholar 

  7. Ismail K, Chu W, Tiberio R, Yen A, Lezec HJ, Shepard MI, Musil CR, Melngailis J, Antoniadis DA, Smith HI (1989) J Vac Sci Technol B7 (6): 2025–2029

    Article  Google Scholar 

  8. Allee DR, Chou SY, Harris JS Jr, Pease RFW (1989) J Vac Sci Technol B7(6):2015–2019

    Google Scholar 

  9. Bernstein G, Ferry DK (1987) J Vac Sci Technol B5 (4): 964–966

    Article  Google Scholar 

  10. Kubena RL, Joyce RJ, Ward JW, Garvin HL, Sratton FP, Brault RG (1988) J Vac Sci Technol B6: 353–356

    Article  Google Scholar 

  11. Rarback H, Shu D, Feng SC, Ade H, Kirz J, McNulty I, Kern DP, Chang THP, Vladimirsky Y, Iskander N, Attwood D, McQuaid K, Rothman S (1988) Rev Sci Instrum 59: 52–59

    Article  ADS  Google Scholar 

  12. McCord MA, Pease RFW (1986) J Vac Sci Technol B4: 86–88

    Google Scholar 

  13. McCord MA, Pease RFW (1985) J Vac Sci Technol B3: 198–201

    Article  Google Scholar 

  14. Eigler DM, Schweizer EK (1990) Nature 344: 524–526

    Article  ADS  Google Scholar 

  15. Broers AN, Timbs AE (1989) Microelectron Engin 9: 187–190

    Article  Google Scholar 

  16. Craighead HG, Howard RE, Jackel LD, Mankiewich PM (1983) Appl Phys Lett 42 (1): 38–40

    Article  ADS  Google Scholar 

  17. Broers AN, Harper JME, Molzen WW (1978) Appl Phys Lett 33 (5): 392–394

    Article  ADS  Google Scholar 

  18. Broers AN (1981) J Electrochem Soc 128 (1): 166–170

    Article  Google Scholar 

  19. Ouano AC, Gipstein E, Johnston D, Need OU III (1977) Polymer Eng Sci 17: 396–401

    Article  Google Scholar 

  20. Broers AN, Cuomo JJ, Harper J, Molzen W, Laibowitz RB, Pomerantz M (1978) Electron Micros II1:343–354

    Google Scholar 

  21. Broers AN, Cuomo JJ, Krakow W (1981) IBM Tech Disclosure Bull 24: 1534

    Google Scholar 

  22. Isaacson M, Muray A (1981) J Vac Sci Technol 19: 1117–1120

    Article  ADS  Google Scholar 

  23. Muray A, Scheinfein M, Isaacson M, Adesida I (1985) J Vac Sci Technol B3(1):367–372

    Google Scholar 

  24. Mochel ME, Humphreys CJ, Eades JA, Mochel JM, Petford AM (1983) Appl Phys Lett 42 (4): 392–394

    Article  ADS  Google Scholar 

  25. Muray A, Isaacson M (1983) J Vac Sci Technol B1 (4): 1091–1095

    Article  Google Scholar 

  26. Kratschmer E, Isaacson M (1986) J Vac Sci Technol B4 (1): 361–364

    Article  Google Scholar 

  27. O’Keeffe TW, Handy RM (1968) Solid state electronics, vol 11. Pergamon, London, pp 261–266

    Google Scholar 

  28. Broers AN, Molzen WW, Cuomo JJ, Wittels ND (1976) Appl Phys Lett 29 (9): 596–598

    Article  ADS  Google Scholar 

  29. Allee DR, Broers AN (1990) Appl Phys Lett 57 (21): 2271–2273

    Article  ADS  Google Scholar 

  30. Allee DR, Umbach CP, Broers AN (1991) J Vac Sci Technol B9 (6): 2839–2843

    Google Scholar 

  31. Joy DC (1988) In: Craven AJ, Elder H (eds) Proc European meeting on electron microscopy 1988. Inst Phys Conf Ser 93(1):23

    Google Scholar 

  32. Pan X, Allee DR, Broers AN, Tang YS, Wilkinson CW (1991) Appl Phys Lett 59 (24): 3157–3158

    Article  ADS  Google Scholar 

  33. Vasilov VS, Kiv AE, Niyazova OR (1975) Phys Sol (a) 32: 11

    Article  Google Scholar 

  34. Beall Fowler W (1983) Semicond Insul 5: 583

    Google Scholar 

  35. Aitken JM (1980) J Noncryst Sol 40: 31

    Article  ADS  Google Scholar 

  36. Knotek ML (1983) Semicond Insul 5: 361

    Google Scholar 

  37. Feibelman PJ, Knotek ML (1978) Phys Rev B18 (12): 6531–6539

    Article  ADS  Google Scholar 

  38. Taft EA (1978) J Electrochem Soc 125: 968

    Article  Google Scholar 

  39. Pliskin WA (1977) J Vac Sci Technol 14 (5): 1064–1081

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Japan

About this paper

Cite this paper

Allee, D.R., Pan, X.D., Broers, A.N., Umbach, C.P. (1992). Ultra-High Resolution Electron Beam Patterning of SiO2: A Review. In: Namba, S., Hamaguchi, C., Ando, T. (eds) Science and Technology of Mesoscopic Structures. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66922-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66922-7_38

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66924-1

  • Online ISBN: 978-4-431-66922-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics