MOCVD Methods for Fabricating Semiconductor Nano-Structures

  • Takashi Fukui
  • Seigo Ando
  • Hisao Saito
Conference paper


Methods of fabricating quantum well wires and dots by metalorganic chemical vapor deposition (MOCVD) are reviewed. There are two methods of fabricating very narrow as-grown quantum wires and dots by crystal growth. One, using crystallographic facets grown by selective area MOCVD, produces facet quantum wires and quantum dots. The other using fractional-layer superlattices on GaAs vicinal surfaces, grows quantum wire arrays. The advantage of these quantum well wire and dot fabrication methods is that wire and dot widths as narrow as 10 nanometers can be obtained without any processing damage.


Quantum Wire Wire Array Metalorganic Chemical Vapor Deposition Vicinal Surface Crystallographic Facet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sakaki H (1980) Jpn J Appl Phys 19: L735ADSCrossRefGoogle Scholar
  2. 2.
    Tokura Y, Tsubaki K (1988) Appl Phys Lett 53: 1807Google Scholar
  3. 3.
    Arakawa Y, Sakaki H (1982) Appl Phys Lett 40: 939ADSCrossRefGoogle Scholar
  4. 4.
    Washburn S, Umbach CP, Laibowitz RB, Webb RA (1985) Phys Rev Lett B32: 4789ADSGoogle Scholar
  5. 5.
    Roukes ML, Scherer A, Allen SJ Jr, Craighead HG, Ruthen RM, Beebe ED, Harbison JP (1987) Phys Rev Lett 59: 3011ADSCrossRefGoogle Scholar
  6. 6.
    Asai H, Yamada S, Fukui T (1987) Appl Phys Lett 51: 1518ADSCrossRefGoogle Scholar
  7. 7.
    Fukui T, Ando S (1989) Electron Lett 25: 410ADSCrossRefGoogle Scholar
  8. 8.
    Fukui T, Ando S, Fukai Y (1990) Appl Phys Lett 57: 1209ADSCrossRefGoogle Scholar
  9. 9.
    Fukui T, Ando S, Tokura Y, Toriyama T (1990) Extended abstracts of the 22nd conference on solid state developed matter, Sendai, August 22–24, p 99Google Scholar
  10. 10.
    Fukui T, Saito H (1987) Appl Phys Lett 50: 824ADSCrossRefGoogle Scholar
  11. 11.
    Fukui T, Saito H (1988) J Vac Sci Technol B6: 1373ADSCrossRefGoogle Scholar
  12. 12.
    Yamada S, Asai H, Fukai Y, Fukui T (1989) Phys Rev B15: 11 199Google Scholar
  13. 13.
    Petroff PM, Gossard AC, Wiegmann W (1984) Appl Phys Lett 45: 620ADSCrossRefGoogle Scholar
  14. 14.
    Ando H, Saito H, Fukui T (1990) Extended abstracts 22nd conference on solid state developed matter, Sendai, August 22–24, p 123Google Scholar
  15. 15.
    Kasu M, Ando H, Saito H, Fukui T (1991) Appl Phys Lett 59: 301ADSCrossRefGoogle Scholar
  16. 16.
    Tsubaki K, Fukui T, Tokura Y, Saito H, Susa N (1988) Electron Lett 24: 1267ADSCrossRefGoogle Scholar
  17. 17.
    Tsubaki K, Tokura Y, Fukui T, Saito H, Susa N (1989) Electron Lett 25: 728CrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Takashi Fukui
    • 1
  • Seigo Ando
  • Hisao Saito
    • 2
  1. 1.Research Center for Interface Quantum ElectronicsHokkaido UniversitySapporo, 060Japan
  2. 2.NTT Basic Research LaboratoriesMusashino Tokyo, 180Japan

Personalised recommendations