Advertisement

Properties of GaAs-AlGaAs Quantum Wire Superlattices Grown by Molecular Beam Epitaxy

  • Pierre M. Petroff
Conference paper

Summary

A novel type of superlattice, the serpentine superlattice, with a built in quantum wire superlattice has been grown directly by molecular beam epitaxy. The uniformity issues and photoluminescence polarization anisotropy properties associated with the quantum wire superlattice are presented. Both transmission electron microscopy and photoluminescence measurements indicate that control of the growth kinetics still limits the quality of these structures.

Keywords

Quantum Wire Metal Organic Chemical Vapor Deposition Step Edge Cycle Coverage Vicinal Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kotthaus J, Hansen W, Pohlman H, Wassermeier M, Ploog K (1988) Surf Sci 196: 600ADSCrossRefGoogle Scholar
  2. 2.
    Kohl M, Heitman D, Grambow P, Ploog K (1989) Phys Rev Lett 63: 2124ADSCrossRefGoogle Scholar
  3. 3.
    Kash K, Vander Waag BP, Mahoney DD, Gozdz AS, Florez LT, Harbison JP, Sturge DM (1991) Phys Rev Lett 67: 1326ADSCrossRefGoogle Scholar
  4. 4.
    Gaines JM, Petroff PM, Kroemer H, Simes RJ, Geels RS, English JH (1988) J Vac Sci Technol B6: 1378ADSCrossRefGoogle Scholar
  5. 5.
    Tokura Y, Saito H, Fukui T (1989) J Crystal Growth 94: 46ADSCrossRefGoogle Scholar
  6. 6.
    Kapon E, Hwang DM, Bhat R (1989) Phys Rev Lett 63: 430ADSCrossRefGoogle Scholar
  7. 7.
    Petroff PM, Gossard AC, Wiegman W (1984) Appl Phys Lett 45: 620ADSCrossRefGoogle Scholar
  8. 8.
    Fukui T, Saito H (1988) J Vac Sci Technol B6: 1373ADSCrossRefGoogle Scholar
  9. 9.
    Chalmers SA, Gossard AC, Petroff PM, Gaines JM, Kroemer H (1989) J Vac Sci Technol B7: 1357CrossRefGoogle Scholar
  10. 10.
    Chalmers SA, Gossard AC, Petroff PM, Kroemer H (1990) J Vac Sci Technol B8: 431CrossRefGoogle Scholar
  11. 11.
    Chalmers S, Gossard AC, Kroemer H (1990) J Cryst Growth 111: 647CrossRefGoogle Scholar
  12. 12.
    Tsuchiya M, Gaines JM, Yan RH, Simes RJ, Holtz PO, Coldren LA, Petroff PM (1989) Phys Rev Lett 62: 466ADSCrossRefGoogle Scholar
  13. 13.
    Tanaka M, Sakaki H (1989) Appl Phys Lett 54: 1326ADSCrossRefGoogle Scholar
  14. 14.
    Kasu M, Ando H, Saito H, Fukui T (1991) Appl Phys Lett 59: 301ADSCrossRefGoogle Scholar
  15. 15.
    Miller MS, Pryor CE, Wehman H, Samoska LA, Kroemer H, Petroff PM (1991) J Cryst Growth 111: 323ADSCrossRefGoogle Scholar
  16. 16.
    Miller MS, Weman H, Pryor CE, Krishnamurty M, Petroff PM, Kroemer H, Merz JL (1992) Phys Rev Lett 68: 3464ADSCrossRefGoogle Scholar
  17. 17.
    Weman H, Miller MS, Pryor CE, Krishnamurty M, Petroff PM, Kroemer H, Merz JL (1992) Phys Rev BGoogle Scholar
  18. 18.
    Pashley MD, Haberern KW, Gaines JM (1991) Appl Phys Lett 58: 406ADSCrossRefGoogle Scholar
  19. 19.
    Petroff PM, Logan RA, Cho AY, Reinhart FK, Gossard AC, Wiegmann W (1982) Phys Rev Lett 48: 170ADSCrossRefGoogle Scholar
  20. 20.
    Pryor CE (1991) Phys Rev B44: 12912CrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Pierre M. Petroff
    • 1
  1. 1.Materials Science DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations