Probing Spin-Glass Configurations with Mesoscopic Conductance Fluctuations

  • Paul G. N. de Vegvar
  • Laurent P. Lévy
  • Ted A. Fulton
Conference paper


The natural sensitivity of the conductance of mesoscopic-sized samples to the specific scattering potential has been theoretically proposed as a method to explore the complex frozen magnetic order in systems such as spin-glasses. Recent magneto-transport measurements on 1000 ppm CuMn films and wires demonstrate phase coherent electron propagation over 0.4-µm distances. Exploiting the broken time-reversal symmetry of the spin-glass state, a unique magneto-fingerprint of the specific frozen spin-configuration is extracted from a pair of resistance measurements. This technique is then applied to study how the spin configuration changes along different paths in the HT plane, reaching some surprising conclusions not obtainable by other experimental means.


Spin Configuration Feynman Path Conductance Fluctuation Field Cycling Bulk Spin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Umbach CP, Washburn S, Laibowitz RB, Webb RA (1984) Phys Rev B30: 4048;ADSCrossRefGoogle Scholar
  2. Lee PA, Stone AD (1985) Phys Rev Lett 55: 1622;ADSCrossRefGoogle Scholar
  3. Altshuler BL (1985) Pis’ma Zh Eksp Teor Fiz (in Russian) 41: 530Google Scholar
  4. Altshuler BL. JETP Lett (1985) 41: 648ADSGoogle Scholar
  5. 2.
    Al’tshuler BL, Spivak BZ (1985) Pis’ma Zh Eksp Teor Fiz (in Russian) 42: 363Google Scholar
  6. Al’tshuler BL, Spivak BZ. JETP Lett., 42: 447 (1985)ADSGoogle Scholar
  7. Feng S, Bray AJ, Lee P, Moore MA (1987) Phys Rev B36: 5624;ADSCrossRefGoogle Scholar
  8. Israeloff NE, Weissman MB, Nieuwenhuys GJ, Kosiorowska J (1989) Phys Rev Lett 63: 794ADSCrossRefGoogle Scholar
  9. 3.
    Lévy LP, Ogielski AT (1986) Phys Rev Lett 57: 3288;ADSCrossRefGoogle Scholar
  10. Kenning GG, et al (1990) Phys Rev B42: 2393;ADSCrossRefGoogle Scholar
  11. Fisher D, Huse D (1988) Phys Rev B38: 386ADSCrossRefGoogle Scholar
  12. 4.
    Van Hasendonck C, Vloeberghs H, Bruynseraede Y (1989) In: Reed N, Kirk W (eds) Nanostructure Physics and Fabrication.Google Scholar
  13. 5.
    Bass J (1982) In: Hellwege K.-H. (ed) Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, series III, vol 15a. Springer, New York p 166;Google Scholar
  14. Laborde O, Radhakrishna P (1973) J Phys, F3: 1731;ADSCrossRefGoogle Scholar
  15. Ford PJ, Mydosh JA, (1976) Phys Rev B14: 2057;ADSCrossRefGoogle Scholar
  16. Nigam AK, Majumdar AK (1983) Phys Rev B27: 495ADSCrossRefGoogle Scholar
  17. 6.
    Dolan GJ, Dunsmuir J (1980) Physica, B152: 7Google Scholar
  18. 7.
    Wei Wei, Bergmann G (1988) Phys Rev B38: 11751;CrossRefGoogle Scholar
  19. Lévy LP, de Vegvar PGN (1989) Bull Am Phys Soc 34: 415Google Scholar
  20. 8.
    Washburn S, Webb RA (1986) Adv Phys 35: 375ADSCrossRefGoogle Scholar
  21. 9.
    Büttiker M (1988) IBM J Res Dev 32: 317CrossRefGoogle Scholar
  22. 10.
    Lee PA (1987) Proc 18`h Conf on Low Temp Phys, Kyoto 1987, JJAP 26: 1934Google Scholar
  23. Al’tshuler BL (1987) ibid 26:1938Google Scholar
  24. 11.
    Binder K, Young AP, Rev Mod Phys 58: 802;Google Scholar
  25. Parisi G, Mezard M, Virasoro M (1987) Spin-Glasses and beyond. World Scientific, SingaporeGoogle Scholar
  26. 12.
    Landauer R (1988) IBM J Res Dev 32: 306MathSciNetCrossRefGoogle Scholar
  27. 13.
    de Vegvar PGN, Lévy LP, Fulton TA (1991) Phys Rev Lett 66: 2380ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Paul G. N. de Vegvar
  • Laurent P. Lévy
  • Ted A. Fulton
    • 1
  1. 1.AT & T Bell LaboratoriesMurray HillUSA

Personalised recommendations