Skip to main content

Probing Spin-Glass Configurations with Mesoscopic Conductance Fluctuations

  • Conference paper
Science and Technology of Mesoscopic Structures

Summary

The natural sensitivity of the conductance of mesoscopic-sized samples to the specific scattering potential has been theoretically proposed as a method to explore the complex frozen magnetic order in systems such as spin-glasses. Recent magneto-transport measurements on 1000 ppm CuMn films and wires demonstrate phase coherent electron propagation over 0.4-µm distances. Exploiting the broken time-reversal symmetry of the spin-glass state, a unique magneto-fingerprint of the specific frozen spin-configuration is extracted from a pair of resistance measurements. This technique is then applied to study how the spin configuration changes along different paths in the HT plane, reaching some surprising conclusions not obtainable by other experimental means.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Umbach CP, Washburn S, Laibowitz RB, Webb RA (1984) Phys Rev B30: 4048;

    Article  ADS  Google Scholar 

  2. Lee PA, Stone AD (1985) Phys Rev Lett 55: 1622;

    Article  ADS  Google Scholar 

  3. Altshuler BL (1985) Pis’ma Zh Eksp Teor Fiz (in Russian) 41: 530

    Google Scholar 

  4. Altshuler BL. JETP Lett (1985) 41: 648

    ADS  Google Scholar 

  5. Al’tshuler BL, Spivak BZ (1985) Pis’ma Zh Eksp Teor Fiz (in Russian) 42: 363

    Google Scholar 

  6. Al’tshuler BL, Spivak BZ. JETP Lett., 42: 447 (1985)

    ADS  Google Scholar 

  7. Feng S, Bray AJ, Lee P, Moore MA (1987) Phys Rev B36: 5624;

    Article  ADS  Google Scholar 

  8. Israeloff NE, Weissman MB, Nieuwenhuys GJ, Kosiorowska J (1989) Phys Rev Lett 63: 794

    Article  ADS  Google Scholar 

  9. Lévy LP, Ogielski AT (1986) Phys Rev Lett 57: 3288;

    Article  ADS  Google Scholar 

  10. Kenning GG, et al (1990) Phys Rev B42: 2393;

    Article  ADS  Google Scholar 

  11. Fisher D, Huse D (1988) Phys Rev B38: 386

    Article  ADS  Google Scholar 

  12. Van Hasendonck C, Vloeberghs H, Bruynseraede Y (1989) In: Reed N, Kirk W (eds) Nanostructure Physics and Fabrication.

    Google Scholar 

  13. Bass J (1982) In: Hellwege K.-H. (ed) Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, series III, vol 15a. Springer, New York p 166;

    Google Scholar 

  14. Laborde O, Radhakrishna P (1973) J Phys, F3: 1731;

    Article  ADS  Google Scholar 

  15. Ford PJ, Mydosh JA, (1976) Phys Rev B14: 2057;

    Article  ADS  Google Scholar 

  16. Nigam AK, Majumdar AK (1983) Phys Rev B27: 495

    Article  ADS  Google Scholar 

  17. Dolan GJ, Dunsmuir J (1980) Physica, B152: 7

    Google Scholar 

  18. Wei Wei, Bergmann G (1988) Phys Rev B38: 11751;

    Article  Google Scholar 

  19. Lévy LP, de Vegvar PGN (1989) Bull Am Phys Soc 34: 415

    Google Scholar 

  20. Washburn S, Webb RA (1986) Adv Phys 35: 375

    Article  ADS  Google Scholar 

  21. Büttiker M (1988) IBM J Res Dev 32: 317

    Article  Google Scholar 

  22. Lee PA (1987) Proc 18`h Conf on Low Temp Phys, Kyoto 1987, JJAP 26: 1934

    Google Scholar 

  23. Al’tshuler BL (1987) ibid 26:1938

    Google Scholar 

  24. Binder K, Young AP, Rev Mod Phys 58: 802;

    Google Scholar 

  25. Parisi G, Mezard M, Virasoro M (1987) Spin-Glasses and beyond. World Scientific, Singapore

    Google Scholar 

  26. Landauer R (1988) IBM J Res Dev 32: 306

    Article  MathSciNet  Google Scholar 

  27. de Vegvar PGN, Lévy LP, Fulton TA (1991) Phys Rev Lett 66: 2380

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Japan

About this paper

Cite this paper

de Vegvar, P.G.N., Lévy, L.P., Fulton, T.A. (1992). Probing Spin-Glass Configurations with Mesoscopic Conductance Fluctuations. In: Namba, S., Hamaguchi, C., Ando, T. (eds) Science and Technology of Mesoscopic Structures. Springer, Tokyo. https://doi.org/10.1007/978-4-431-66922-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-66922-7_3

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-66924-1

  • Online ISBN: 978-4-431-66922-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics