Electron Charge Distribution and Transport Properties of Narrow Channels

  • Arisato Kawabata


We show that in one-dimensional systems the conductance at zero temperature is determined only by the electronic charge distribution, using an extended form of Friedel sum rule. We apply the theory to quantum dots and double point contacts. It is predicted that the transmission probability of the electrons through a quantum dot is unity when the dot has a magnetic moment of magnitude 1/2 due to an unpaired electron. This transparency of the dot is the manifestation of the Kondo effect and is the resonant transmission via a Kondo resonant state at the Fermi level. The case of a larger magnetic moment will also be discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Scott-Thomas JHF, Field SB, Kastner MA, Smith HI, Antoniadis DA (1989) Phys Rev Lett 62: 583–586ADSCrossRefGoogle Scholar
  2. 2.
    Meirav U, Kastner MA, Heiblum M, Wind SJ (1989) Phys Rev B40: 5871–5874ADSCrossRefGoogle Scholar
  3. 3.
    van Houten H, Beenakker CWJ (1989) Phys Rev Lett 63: 1893–1893ADSCrossRefGoogle Scholar
  4. 4.
    Meir Y, Wingreen NS, Lee PA (1991) Phys Rev Lett 66: 3048–3051ADSCrossRefGoogle Scholar
  5. 5.
    Meirav U, Kastner MA, Wind SJ (1990) Phys Rev Lett 65: 771–774ADSCrossRefGoogle Scholar
  6. 6.
    McEuen PL, Foxman EB, Meirav U, Kastner MA, Meir Y, Wingreen NS, Wind SJ (1991) Phys Res Lett 66: 1926–1929ADSCrossRefGoogle Scholar
  7. 7.
    Friedel J (1952) Phil Mag 43: 153–189zbMATHGoogle Scholar
  8. 8.
    Friedel J (1954) Adv Phys 3: 446–507ADSCrossRefGoogle Scholar
  9. 9.
    Landauer R (1987) Z Phys B68:217–228 (and references therein)Google Scholar
  10. 10.
    Shiba H (1975) Prog Theor Phys 54: 967–981ADSCrossRefGoogle Scholar
  11. 11.
    Yoshimori A, Zawadowski A (1982) J Phys C (Solid State Physics) 15: 5241–5253ADSCrossRefGoogle Scholar
  12. 12.
    Langer JS, Ambegaokar V (1961) Phys Rev 121: 1090–1092ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    Abrikosov AA, Gor’kov LP, Dzyaloshinski IE (1975) Methods of quantum field theory in statistical physics. Dover, New York, pp 97–106Google Scholar
  14. 14.
    Kondo J (1969) In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, vol 23. Academic, New York, pp 183–281Google Scholar
  15. 15.
    Yamada K (1975) Progr Theor Phys 53: 970–986ADSCrossRefGoogle Scholar
  16. 16.
    Duke CB (1969) In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid State Physics, suppl 10. Academic, New York, pp 1–353Google Scholar
  17. 17.
    Häusler W, Kramer B, Masek J (1991) Z Phys B83: 435–442CrossRefGoogle Scholar
  18. 18.
    Cragg DM, Lloyd PL (1979) J Phys C (Solid State Physics) 12: L215–219ADSCrossRefGoogle Scholar
  19. 19.
    Nozieres Ph, Blandin A (1980) J Physique 41: 193–211Google Scholar
  20. 20.
    Ng TK, Lee PA (1988) Phys Rev Lett 61: 1768–1771ADSCrossRefGoogle Scholar
  21. 21.
    Grazman LI, Raikh ME: (1988) JETP Lett 47 452ADSGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Arisato Kawabata
    • 1
  1. 1.Department of PhysicsGakushuin UniversityTokyo, 171Japan

Personalised recommendations