Advertisement

Logic Circuits Using Resonant-Tunneling Hot Electron Transistors (RHETs)

  • Naoki Yokoyama
  • Motomu Takatsu
  • Kenichi Imamura
  • Hiroaki Ohnishi
  • Shunichi Muto
  • Toshihiko Mori
  • Takami Adachihara
  • Akihiro Shibatomi

Summary

This review paper has focused on the research and development of resonant-tunneling hot electron transistors. It is shown that an InGaAs-based RHET with a thin collector barrier structure improves current gain and peak-tovalley current ratio. RHET basic logic gates, including Exclusive-NOR, and three-input majority gates, and a state-holding circuit are proposed. We used these gates to produce working frequency dividers, a latch circuit, and a full adder. These circuits use fewer transistors than bipolar circuits and dissipate less power because of their lower supply voltage and total current.

In future integrated circuits, delay time due to wires connecting transistors is expected to be more significant than transistor speed. New functional devices, such as the RHET, promise a higher scale of integration giving breakthroughs in the speed and power limitations of conventional integrated circuits.

Keywords

Frequency Divider Logic Circuit Clock Signal Bipolar Transistor Peak Current Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mead CA (1960) Proc IRE 48: 359Google Scholar
  2. 2.
    Sze SM Physics of semiconductor devices 2nd edn John Wiley, New York, p 559Google Scholar
  3. 3.
    Heiblum M (1981) Solid-State Elec 24: 343ADSCrossRefGoogle Scholar
  4. 4.
    Yokoyama N, Imamura K, Ohnishi T, Nishi H, Muto S, Kondo K, Hiyamizu S (1984) IEDM Technical Digest, p 532Google Scholar
  5. 5.
    Muto S, Imamura K, Yokoyama N, Hiyamizu S, Nishi H (1985) Electron Lett, p 555Google Scholar
  6. 6.
    Yokoyama N, Imamura K, Ohnishi T, Nishi H, Muto S, Kondo K, Hiyamizu S (1985) Japan, J Appl Phys 23: L311CrossRefGoogle Scholar
  7. 7.
    Mori T, Ohnishi H, Imamura K, Muto S, Yokoyama N (1986) Appl Phys Lett 49: 1770ADSCrossRefGoogle Scholar
  8. 8.
    Inata Tsuguo, Muto S, Sasa S, Fujii T, Hiyamizu S (1987) Extended abstracts of the 19th conf on SSDM, Tokyo, 1987. Japan Society of Applied Physics, Tokyo p 359Google Scholar
  9. 9.
    Inata T, Muto S, Nakata Y, Sasa S, Fujii T, Hiyamizu S (1987) Japan. J Appl Phys 26: L1332ADSCrossRefGoogle Scholar
  10. 10.
    Takatsu M, Imamura K, Ohnishi H, Mori T, Adachihara T, Muto S, Yokoyama N (1990) Device research conference University of California, Santa Barbara, June 27, 1990Google Scholar
  11. 11.
    Imamura K, Takatsu M, Mori T, Adachihara T, Ohnishi H, Muto S, Yokoyama N (1991) Extended abstracts of the 1991 SSDM, Tokyo, 1991. Japan Society of Applied Physics, Tokyo, p 80; Takatsu M, Imamura K, Ohnishi H, Mori T, Adachihara T, Muto S, Yokoyama N (1991) Technical digest of 1991 GaAs IC symposium, Monterey. I000, New York p 95Google Scholar
  12. 12.
    Mori T, Imamura K, Ohnishi H, Takatsu M, Adachihara T, Muto S, Yokoyama N (1990) Device Research Conference, University of California, Santa Barbara, June 27, 1990Google Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Naoki Yokoyama
  • Motomu Takatsu
  • Kenichi Imamura
  • Hiroaki Ohnishi
  • Shunichi Muto
  • Toshihiko Mori
  • Takami Adachihara
  • Akihiro Shibatomi
    • 1
  1. 1.Fujitsu Laboratories Ltd.Fujitsu LimitedAtsugiJapan

Personalised recommendations