Lateral Electronic Superlattices on Semiconductors

  • Jörg P. Kotthaus
Conference paper


The effects of a voltage-tunable lateral superlattice potential on the electronic properties of a two-dimensional electron system are reviewed in the ballistic regime in which the electronic mean free path is longer than the super-lattice period for the particular case of square superlattices. Field-effect devices with laterally periodic gates serve to tune the ratio of Fermi energy to superlattice potential and make it possible to investigate all regimes between weakly perturbing and strongly confining superlattices. A magnetic field applied perpendicular to the plane of the electron system is used to provide a tunable length scale, namely the cyclotron radius at the Fermi energy. Magnetoresistance features that are observed when the diameter of the cyclotron orbit is equal to or a multiple of the superlattice period are shown to be quantitatively explainable in a semiclassical trajectory model of deterministic diffusion of ballistic electrons. The intraband response of lateral superlattices at infrared frequencies is demonstrated to provide information about the unscreened confining potential. Here the trajectory model can also serve to give a better understanding of the effects of a lateral superlattice on the dynamic electronic properties.


Gate Voltage Magnetic Field Dependence Trajectory Model Magneto Resistance Superlattice Period 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hansen W, Kotthaus JP, Merkt U (1991) Vol. ed. Reed M Semiconductors and semimetals, vol 35. Academic, New York: 279–380Google Scholar
  2. 2.
    Ismail K, Chu W, Antoniadis DA, Smith HI (1988) Appl Phys Lett 52: 1071–1073ADSCrossRefGoogle Scholar
  3. 3.
    Weiss D, von Klitzing K, Ploog K, Weimann G (1989) Europhys Lett 8: 179–184ADSCrossRefGoogle Scholar
  4. 4.
    Winkler RW, Kotthaus JP, Ploog K (1989) Phys Rev Lett 62: 1177–1180ADSCrossRefGoogle Scholar
  5. 5.
    Gerhardts RR, Weiss D, von Klitzing K (1989) Phys Rev Lett 62: 1173–1176ADSCrossRefGoogle Scholar
  6. 6.
    Lorke A (1991) Doctoral dissertation, University of MunichGoogle Scholar
  7. 7.
    Lorke A, Kotthaus JP, Ploog K (1991) Phys Rev B44: 3447–3450ADSCrossRefGoogle Scholar
  8. 8.
    Ensslin K, Petroff PM (1990) Phys Rev B41: 12307–12310CrossRefGoogle Scholar
  9. 9.
    Lorke A, Kotthaus JP, Ploog K (1991) Superlattices and Microstructures 9: 103–106ADSCrossRefGoogle Scholar
  10. 10.
    Kern K, Heitmann D, Grambow P, Zhang YH, Ploog K (1991) Phys Rev Lett 66: 1618 1621Google Scholar
  11. 11.
    Weiss D, Roukes ML, Menschig A, Grambow P, von Klitzing K, Weimann G (1991) Phys Rev Lett 66:2790–2793 154 J.P. KotthausGoogle Scholar
  12. 12.
    Sikorski C, Merkt U (1989) Phys Rev Lett 62: 2164–2167ADSCrossRefGoogle Scholar
  13. 13.
    Hansen W, Smith TP, Lee KY, Brum JA, Knoedler CM, Hong JM, Kern DP (1989) Phys Rev Lett 62: 2168–2171ADSCrossRefGoogle Scholar
  14. 14.
    Alsmeier J, Batke B, Kotthaus JP (1990) Phys Rev B41: 1699–1702ADSCrossRefGoogle Scholar
  15. 15.
    Demel T, Heitmann, D, Grambow P, Ploog K (1990) Phys Rev Lett 64: 788–791ADSCrossRefGoogle Scholar
  16. 16.
    Lorke A, Kotthaus JP, Ploog K (1990) Phys Rev Lett 64: 2559–2562ADSCrossRefGoogle Scholar
  17. 17.
    Hansen W, Horst M, Kotthaus JP, Merkt U, Sikorski C, Ploog K (1987) Phys Rev Lett 58: 2586–2589ADSCrossRefGoogle Scholar
  18. 18.
    Kotthaus JP, Heitmann D (1982) Surf Sci 113: 481–484ADSCrossRefGoogle Scholar
  19. 19.
    Warren AC, Antoniadis DA, Smith HI (1986) Phys Rev Lett 56: 1858–1861ADSCrossRefGoogle Scholar
  20. 20.
    Alsmeier J, Batke E, Kotthaus JP (1989) Phys Rev B40:12 574–12 576Google Scholar
  21. 21.
    Kotthaus JP (1991) In: Ferry DK, Barker JR, Jacobini C (eds) Granular nanoelectronics. Plenum, New YorkGoogle Scholar
  22. 22.
    Beenakker CWJ (1989) Phys Rev Lett 62: 2020–2023ADSCrossRefGoogle Scholar
  23. 23.
    Geisel T, Wagenhuber J, Niebauer P, Obermair G (1991) Phys Rev Lett 64: 1581–1584ADSCrossRefGoogle Scholar
  24. 24.
    Lorke A (1991) Proc EP2DS-9 Conf Surf Sci (1992) 263: 307Google Scholar
  25. 25.
    Allen SJ Jr, Störmer HL, Hwang JCM (1983) Phys Rev B28: 4875–4877ADSCrossRefGoogle Scholar
  26. 26.
    Fock V (1928) Z Phys 47: 446ADSMATHCrossRefGoogle Scholar
  27. 27.
    Sikorski C, Merkt U (1990) Surf Sci 229: 282–286ADSCrossRefGoogle Scholar
  28. 28.
    Brey L, Johnson NF, Halperin BI (1989) Phys Rev B40: 10647–10649CrossRefGoogle Scholar
  29. 29.
    Maksym PA, Chakraborty T (1990) Phys Rev Lett 65: 108–111ADSCrossRefGoogle Scholar
  30. 30.
    Laux SE, Stern F (1986) Appl Phys Lett 49: 91–93ADSCrossRefGoogle Scholar
  31. 31.
    Kumar A, Laux SE, Stern F (1990) Phys Rev B42: 5166–5175ADSCrossRefGoogle Scholar
  32. 32.
    Beenakker CWJ, van Houten H (1989) Phys Rev Lett 63: 1857–1860ADSCrossRefGoogle Scholar
  33. 33.
    Toriumi A, Ismail K, Burkhardt M, Antoniadis DA, Smith HI (1990) Phys Rev B41:12 346–12 349Google Scholar
  34. 34.
    Langbein D (1969) Phys Rev 180: 633–648ADSCrossRefGoogle Scholar
  35. 35.
    Hofstadter DR (1976) Phys Rev B14: 2239–2249ADSCrossRefGoogle Scholar

Copyright information

© Springer Japan 1992

Authors and Affiliations

  • Jörg P. Kotthaus
    • 1
  1. 1.Sektion PhysikUniversität MünchenMünchen 22Germany

Personalised recommendations